Introduction to Engineering Design with Professional Development One

Young engineers hard at work...

http://www.youtube.com/watch?v=hlczxXqez-Y

Introduction to Engineering Design with Professional Development One

Agenda

Professionalism 5 minutes – James Reed The Engineering Design Process 35 minutes – Mark Anderson & James Reed iClicker Survey 10 minutes Introduce and Administer the MBTI tool 60 minutes – Archer Center Team

Professionalism

- Arrive on time to class and remain for full class period
- Refrain from laptop use unless taking class notes or instructed to use for activity
- Turn cell phones off and do not text during class
- Give your full attention to the lecturer and class activities

What To Bring To All Lectures

Laptop fully charged! Writing Materials Textbook iClicker Registered! Working! Fresh / spare batteries!

Coffee is Optional

Your Design Engineering Experience

iClicker Time

A - 1 - 3 years
B - 3 - 5 years
C - 5 - 10 years
D - 10+ years
E - None, I'm taking IED!

What is covered in IED? Professional Development Teamwork Communication Design Process

One of the most important courses you may take!

Design Project 1

Preparation

Break into 4 person groups
You'll need writing materials

Draw a Vehicle

Create one drawing per group
Use the full sheet of paper (make picture large)

Time Limit – 3 Minutes

Any Questions?

Questions

1. Did you have enough information?

- 2. Did you know what to do?
- 3. What process did you use for creating the drawing?
- 4. Did everyone have input to the drawing?

Design Project 2

Preparation

Break into the same 4 person groups
You'll need writing materials

Assign Metrics To Your Requirements

Copy down the list on the overhead
What measurement units apply to each?
Answer "How much / How many" for each item

Time Limit – 3 Minutes

Questions

Could you assign units to all your items? 1. Are the "How Much / How Many" numbers 2. reasonable? What process did you use for selecting the 3. units and numbers? Did everyone have input to the units and 4. numbers?

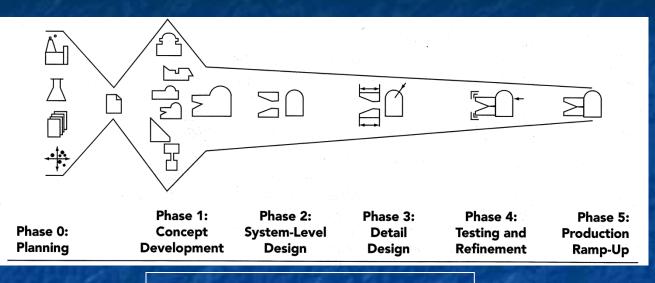
Design Project 3

Preparation Break into 4 person groups You'll need writing materials Draw a Vehicle Create one drawing per group Make a completely new drawing – do not just modify the previous one Use the full sheet of paper (make picture large) Your vehicle must meet the listed requirements, units & numbers Time Limit – 3 Minutes

Questions

- 1. How did your design change? Why?
- 2. Are the "How Much / How Many" numbers still looking reasonable?
- 3. What process did you use for creating the drawing?
- 4. Did everyone have input to the drawing?

Design Project 4

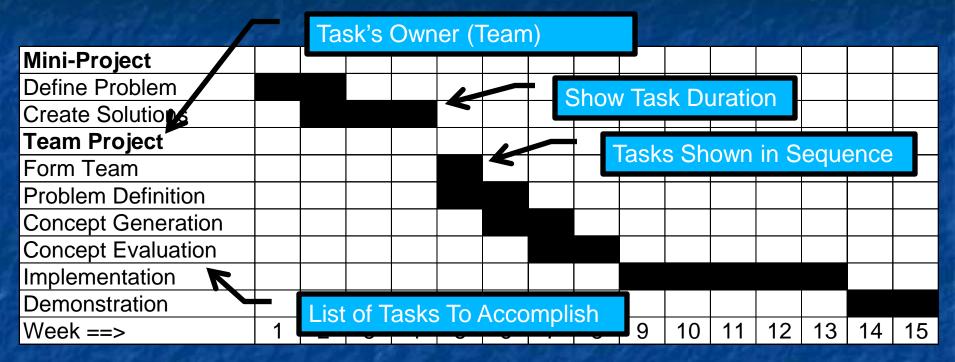

Preparation Break into 4 person groups You'll need writing materials Draw a Vehicle Create three additional drawings per group Make completely new drawings – do not just modify the previous ones Use the full sheets of paper (make picture large) Your vehicle must meet the listed requirements Time Limit – 3 Minutes

Questions

1. How did your design change? Why?

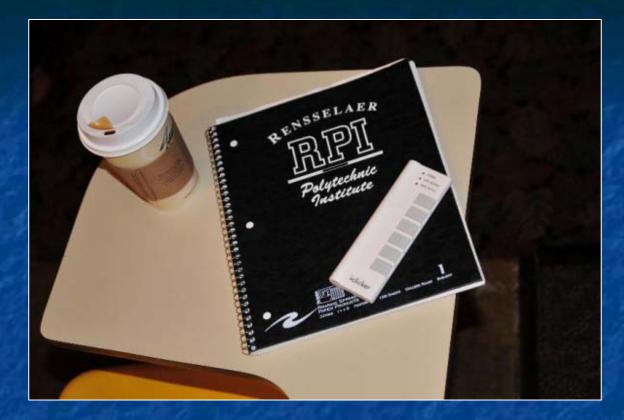
- 2. Are the "How Much / How Many" numbers still reasonable?
- 3. What process did you use for creating the new drawings?
- Did everyone have input to the drawing?
 Of all the drawings, which is the team favorite and why?

A "Generic" Product Development Process


Textbook: Exhibit 2.2)

From This Generic Process, Our Course Focus will be:

- Identify Customer Needs
- Establish Target Specifications
- Generate / Select Concepts
- System-Level Design
- Subsystem-Level Design
- Build / Test


Design Project 1 Design Project 2 Design Project 3 & 4

Course Plan Gantt Chart Example

Two 2 hour lab sessions → 2 projects One 2 hour lecture → Quizzes What is covered in IED? Professional Development Teamwork Communication Design Process

One of the most important courses you may take!

Survey Time! iClickers Out & Ready Please!

Which of the following is used to define a design problem?

- A. System Schematics
- B. Sketches
- c. CAD Models
- **D.** Specifications
- E. Circuit Diagram

All of the following items list common issues that arise during and with the engineering design process **except**:

- A. Poor teamwork and communication
- **B.** Premature convergence on a design concept
- Putting new unproven technology on a product development timeline
- Too much time and resources to get things done
- E. Unclear and/or incomplete problem definition

All of the following are typically found on a GANTT chart **except**:

A. Project activities
B. Relative timing of activities
C. Cost for materials and supplies
D. Team member responsibilities
E. Implied precedence relationships of project activities

Lecture expectations include:

- A. I will arrive on time
- B. I have done the assigned readings
- c. I will have my laptop, iClicker and textbook
- D. I will use my laptop only for class work and only when directed
- E. All of the above

MBTI Information What is the MBTI? Based on Carl Jung's theory of psychological development; 4 areas of human behavior Most statistically valid and reliable selfreport instrument Widely used in industry A great tool to understand yourself and others

Preference

MBTI looks at our preferences in 4 dichotomies of human behavior
Two preferences in each dichotomy
Demonstration of preference

MBTI Administration

Not a test; no right or wrong answers

- Write your name and section number on the bubble sheet—do not write in the booklet!
- Do not spend a long time on any one question or ask others for assistance
- Answer in your "shoes-off self" frame of reference
- You will get your results in IED Class during week #3

MBTI: When Completed

Please place your MBTI Bubble sheets and Booklets in the designated location on the table that corresponds with your section number seat location

Section 3 Lu & Knowles

Schumer & Gross

Section 2 Hoffman & Gross

Section 1 Hoffman & McCloskey <u>Section 4</u> J. Morris & Knowles

Schumer & Schierenbeck

Schumer & Persoon

Section 12 Foley & Persoon Section 11 Caracappa & Reed

Section 13 Caracappa & Allard

Section 5 VanBuren & Allard

Section 6 VanBuren & Allard

> Section 9 Foley & Allard

MBTI Administration Not a test; no right or wrong answers Write your name and section number on the bubble sheet-do not write in the booklet! Do not spend a long time on any one question or ask others for assistance

Answer in your "shoes-off self" frame of reference

You will get your results in IED Class during week #3

MBTI: When Completed

Please place your MBTI Bubble sheets and Booklets on the the table that corresponds with your section number/seat location

不

Swalla & Gross

Swalla & Gross

Section 7 Schummer & Gross

Section 10 Allard & Foley Section 1 Zhou & Teitelman

Section 5 Mendonca & Knowles

Section 6 Mohamed & Westbrook

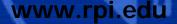
Section 8 Mohamed & Westbrook Section 4 Zhou & Reed

Section 13 Hoffman & Reed

Section 11 Sreepada & Persoon

Section 3 Hsu & Persoon

MBTI Administration Not a test; no right or wrong answers Write your name and section number on the bubble sheet-do not write in the booklet! Do not spend a long time on any one question or ask others for assistance


Answer in your "shoes-off self" frame of reference

You will get your results in IED Class during week #3

Introduction to Engineering Design

Aren Paster Jeff Morris

Interpreting customer needs (Ch#4)
Establishing design specifications (Ch#5)
Background Information for Classroom Activities 2-2, 3-1 and 4-2
Technical Writing

LECTURE OUTLINE

- 1. <u>Customer Requirements & Technical</u> <u>Specs (~ 1 hr)</u>
 - a. Challenges
 - b. Mini-lecture on Chapter 4 (15 mins)
 - c. Mini Demonstration
 - d. Exercises (15 mins)
- e. Mini-lecture on Chapter 5 (10 mins)
 2. Technical Writing (~ 1 hr) www.rpi.edu

Learning objectives

- 1. Identify major categories of <u>customer requirements</u>
- 2. Understand steps and approaches for gathering customer data
- 3. Organize a random collection of customer requirements
- 4. Identify and apply guidelines for writing <u>customer need statements</u>
- 5. Distinguish between **<u>customer requirements</u>** and **<u>design specifications</u>**
- 6. Assign appropriate **metrics** to **design specs**
- 7. Define competitor benchmarking
- 8. Describe approaches for establishing <u>target design specifications</u>

<u>Ch#4</u>

Learning objectives

- 1. Identify major categories of <u>customer requirements</u>
- 2. Understand steps and approaches for gathering customer data
- 3. Organize a random collection of customer requirements
- 4. Identify and apply guidelines for writing <u>customer need statements</u>

5. Customer requirements vs. design specifications

- 6. Distinguish between <u>customer requirements</u> and <u>design specifications</u>
- 7. Assign appropriate <u>metrics</u> to design specs
- 8. Define competitor benchmarking
- 9. Describe approaches for establishing target design specifications

<u>Ch#5</u>

Engineering a Product Design

Over 1,000,000 <u>new</u> product designs are introduced into market each year

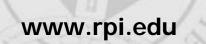
Q. What % of these designs become successful?

✓ 50% of product designs are successful

Why would <u>your</u> "design" fail???

Engineering a Product Design -Anticipated Challenges-

- Unclear problem definition
- Lack of customer inputs
- Conflicting design parameters
- Lack of teamwork
- Poor planning
- Over budget
- High cost



- Wrong technology
- Product failure
- Late to market
- Logistics
- Poor quality control

i-clicker question (Design Failure)

Q. Which of the following factors are responsible for failure of the product designs?

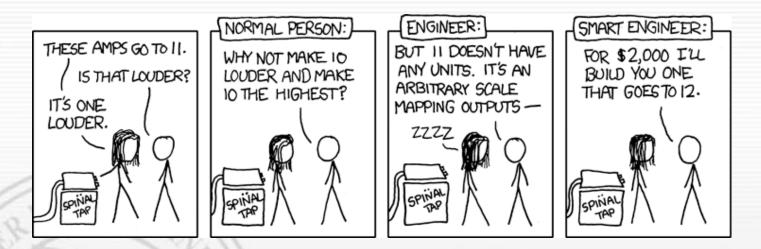
- 1. Unclear Problem Definition
- 2. Lack of Customer Needs
- 3. Neglecting 'validation' & 'testing' steps
- 4. Lack of Team Work
- 5. All of the above

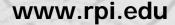


Interpreting Customer Needs

A <u>crucial early</u> step in the engineering design process

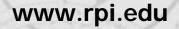
"1. a thing used for transporting people or goods, esp. on land, such as a car, truck, or cart." - Google


Customer Need – move X from pt A to pt B


Interpreting Customer Needs

Watch Short Video # 2

Source: http://www.youtube.com/watch?v=EbVKWCpNFhY



Source: http://www.youtube.com/watch?v=XuzpsO4ErOQ&feature=related

i-clicker question (Customer Requirements)

- Q. We have mini project "final" competition on 2/20/13. When is the right time to look at Customer requirements?
- A. I am waiting to obtain my 'prototype'
- B. My 'partner' will make the decision
- C. Early in the design process
- D. On 2/19/13
- E. None of the above

Customer Interrogation Techniques

- The Art of Eliciting Customer Needs Data:
- 1) When and why do you use this type of product?
- 2) Take us through its typical use.
- 3) What do you like about existing products?
- 4) What do you dislike about existing products?
- 5) Issues and/or improvements about product?

Customer Requirements vs. Design Specifications

- Customer Requirements
 - Expressed in terms of the end user
 - ✓ "The voice of the customer"
 - Often independent of a specific design concept

Design Specifications

- Expressed in quantitative terms
- ✓ <u>"The voice of the engineer"</u>
 - Based upon:
 - Customer requirements
 - Technical feasibility
 - Competitor benchmarks

5-step method: Interpreting customer needs

- 1. Gather raw data from customers
- 2. Interpret the raw data in terms of customer needs
- 3. Organize the customer needs: i) Primary, ii) Secondary, and iii) Tertiary
- 4. Establish the relative importance of the needs
- 5. Reflect on the results and the process

Exercise #1

Mini-Project Rules on LMS list

Constraints and Specifications.

Work backwards and determine the

Customer Needs which these specs

satisfied. Ie: Why was the mini-project

engineered this way?

Who is Mini-Project Customer?

- 1. 10 year old boy
- 2. Aren Paster
- 3. Your IED instructor
- 4. IED student sitting next to you
- 5. Parents of 6-12 year old children

Mini-Projects Constraints

Need	Constraint
Physical safety	Fire from side of machine
Physical safety	No combustion
No Damage	No glue, nails
Physical safety / No Damage	No liquid counterweights
Legitimate Design	No attachments to projectile
Liability	MUST be safe, instructor approval

Mini-Projects Specifications

Customer need	Specification	Metric
No damage	pressure	< 5 psi
Safety	voltage	< 24V
Safety	Distance from operator to firing mechanism	1 ft
Educational	Acceptable working descriptions on Internet	0
www.rpi.edu		

Exercise #2

Juggling Equipment Specifications

Karamazov Brothers

- between one ounce and 10 pounds
- no jagged edges
- no bigger than a breadbox

Mousetrap Wheels

Lx Wheel (100 pack)

A Pitsco Exclusive

Product ID: W30846 | Product Type: W

The *Lx* (front) *Wheel* takes on a mo speed of the *GT* series, *Nitro*, and *C* durability.

+ View Larger Image

Click thumbnail to view larger version.

Specs Resources

Overall Diameter: 36.5 mm

Overall Width: 11.8 mm

Tire Width: 3.25 mm

Mass: 2.5 g

Quantity: pkg of 100

Super C Wheel

A Pitsco Exclusive

Rensselaer

Product ID: W27142 Produ

This wheel from Pitsco is s five-spoke, star-styled, chr top-performing dragsters.

Along with the hub design manufactured for your CO dragster, along with the *N* dragster!

Tires and hubs are shippe

Click thumbnail to view larger version.

Specs Resources

Overall Diameter: 34.05 mm

Overall Width: 13.18 mm

Tire Width: 2 mm

Hole Diameter: Uses a 1/8" diameter axle

Mass: 2.52 g

Quantity: pkg of 100

Mini Project Stocked Components

		1	2	3	4	5	average	high	low	range	
	1/8"										
	plastic wheel	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.000	
	rubber wheel	0.117	0.118	0.118	0.103	0.116	0.114	0.118	0.103	0.015	
	wood dowel	0.124	0.116	0.113	0.118	0.120	0.118	0.124	0.113	0.011	.124116 around circumference
	brass rod	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.000	
	3/16"										
	hub ID	0.175	0.176	0.175	0.175	0.176	0.175	0.176	0.175	0.001	
1	wood dowel brass rod	-		0.199			0.195 0.187	0.199 0.187	0.192 0.187	0.007	.192197 around circumference
		0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.000	

All units inches

www.rpi.edu

±0.0005" measurement

General Categories of Design Requirements

- 1. Performance \rightarrow primary function of the design
- 2. Capacity \rightarrow major physical size characteristic
- 3. Convenience \rightarrow ease of use and flexibility
- Perceived Quality → appeals to senses of sight, touch, hearing
- Reliability → Provides primary function without failure for long time
- 6. Durability \rightarrow withstands abuse
- 7. Safety → will not harm anyone
- 8. Serviceability \rightarrow can be maintained
- 9. Installation \rightarrow allows the end user to use it
- 10. Distribution \rightarrow the logistics of getting it to the end
- 11. Produce-ability \rightarrow can be manufactured easily at low cost
- 12. Life cycle \rightarrow consider potential environmental impact

Engineers set "Measureable" Objectives

- Product Specifications: A set of measurable characteristics for which target values are established for purposes of evaluating a product design
- In establishing product specifications, a design team must consider the following:
 - How well are "all" the customer needs satisfied by the metrics?
 - What are appropriate levels for setting target values?

Ideally each customer requirement is translated into a measureable product specification

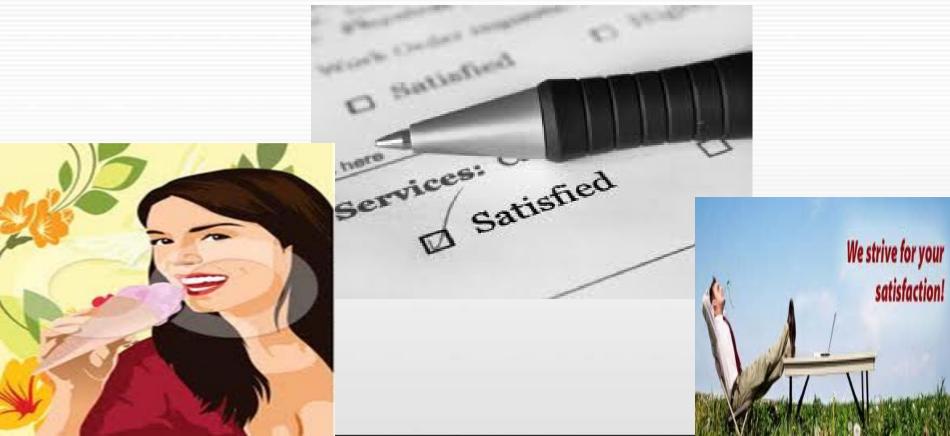
i-clicker question (Technical Specification)

- Which of the following qualifies as a technical specification?
- A. Vivid color
- B. Best coverage
- C.Smooth writing
- D.33% extra color
- E. None of the above

Product Specifications Example: Mountain Bike Suspension Fork

Target Specifications
 List of Metrics (Importance, definable value)
 Benchmarking Information
 Ideal & Marginal target value

Competitor benchmarks help us set ranges of ideal & marginal target values for each metric.


ST Tritrack	Maniray	Rox Tahx Quadra	Rox Tahx Ti21	Tonka Pro	Gunhill Head Shox	
550 N	760 N	500 N	710 N	480 N	680 N	

Marginal Value: 480 to 800 N Ideal Value: 650 to 700 N

Be careful about relying upon a companies published data. Industrial practice is to perform actual tests.

Can we determine if we have satisfied customer needs?

Customer Requirements ←→ Design Specifications Relationships Matrix Excerpt from exhibit 5-5 (page 77) of textbook

Develop list of engineering specifications based upon list of customer requirements. Create relationships matrix	Spring Preload	Dampening coefficient adjustment range	Total mass	Time to assemble frame
Allows easy traversal of slow difficult terrain				
Allows sensitivity adjustment				
Is lightweight				
Easy to install				

Recap: Learning objectives

Interpreting customer requirement (Ch#4)
 Establishing design specifications (Ch#5)

Background Information: Activities 2-2, 3-1, 4-2

Use Our Templates

- LMS > Technical Writing Resources
 - IED-PD1 Mini-Project Final Technical Memo Template
 - IED-PD1 Concept Memo Template (Milestone I)
 - IED-PD1 Final Report Template (Milestone III)

Useful Links

- Center for Communication Practices: Resources for Writers
 <u>http://www.ccp.rpi.edu/resources/</u>
- Writing "Instructions" <u>http://w3.gel.ulaval.ca/~poussart/gel64324/McMurrey/texte/instrux.htm</u>

Technical Writing Handbook

http://www.egr.msu.edu/cee/techcom/handbook.pdf

Citations

- 1. Adams, David. Writing Better Reports: A Handbook for Civil & Environmental Engineers. [Online] August 2001. [Cited: August 23, 2012.] <u>http://www.egr.msu.edu/cee/techcom/handbook.pdf</u>.
- 2. McMurrey, David A. Instructions. Internet Technical Writing Course Guide. [Online] Austin Community College. [Cited: August 23, 2012.] <u>http://w3.gel.ulaval.ca/~poussart/gel64324/McMurrey/texte/instrux.htm</u>.
- **3. Rensselaer Polytechnic Institute.** Resources for Writers. *Center for Communication Pracitces.* [Online] [Cited: August 23, 2012.] <u>http://www.ccp.rpi.edu/resources/</u>.
- **4. Kahn, Jordan.** Apple Posts iPhone 4 User Manual/Guide for iOS 4. *Blogsdna*. [Online] June 25, 2010. [Cited: January 9, 2011.] <u>http://www.blogsdna.com/11132/apple-posts-iphone-4-user-manualguide-for-ios-4.htm</u>.
- 5. Stephen King. [Online] [Cited: June 28, 2010.] http://sporeflections.files.wordpress.com/2008/12/627887871.jpg.