ROBUST DESIGN AND RISK

- 1. Robust Design
 - definitions
 - simple example: two points = a line?
 - engineering example: pipe flow
 - more engineering examples
 - applications to "quality"
- 2. Risk
 - global and local

1. DEFINITIONS

ro·'bust ('ro·,bust) [adj; Latin robustus oaken, strong]

- having or exhibiting strength or vigorous health
- strongly formed or constructed
- strong enough to withstand or overcome intellectual challenges or adversity

Statistics

A *median* (50th percentile) is robust A *mean* (common average) is not

In 10 years, will your graduating class be happy with an average income of \$100,000?

Statistics

A *median* (50th percentile) is robust A *mean* (common average) is not

In 10 years, will your graduating class be happy with an average income of \$100,000?

1 @ \$50,000,000 999 @ \$50,050

Average:\$100,000Median:\$50,050

Happy now?

Robust Design

– strong

and

- simple
- efficient
- flexible
- idiot-proof

(oops, I dropped it)

(Murphy's Law)

(Murphy was an optimist)

– etc.

[Murphy's Law: whatever can go wrong, will go wrong.]

Q: Is there "failure to warn" liability for unintended use?

A: Only if "Reasonably foreseeable"

[http://www.geekologie.com/2010/07/28/lawnmower-man.jpg]

[http://www.geekologie.com/2009/11/17/extreme-mowing.jpg]

A *robust* device, system, or process... "performs as intended even under non-ideal conditions such as manufacturing process variations or a range of operating situations" – Ulrich-Eppinger, p. 201

non-ideal conditions = *noise*

- functional (e.g., diameter of bolt and bolt hole)
- environmental (e.g., temperature)
- = uncontrolled variations

(including accidents and unintended use)

2. EXAMPLE: TWO POINTS = A LINE?

Think like an engineer

Could the true calibration curve be linear?

B. No

A. Yes

C. Not enough information

Think like an engineer

Could the true calibration curve be linear?

TCH - IED Robust Design, page 10 of 33

Reality (still two points; piecewise linear)

Repeat the tests with the two weights

There will be variations in the response

Why? *Noise*.

non-ideal conditions = *noise*

- functional
 - right before testing, did you:
 - relubricate your axles?
- environmental
 - would your mini-projects have performed exactly the same if the room temperature was 90°F?

Who is the Better Target Shooter?

Choose A (Sam) or B (John).

TCH - IED Robust Design, page 13 of 33

Who is the Better Target Shooter?

A is better Sam only needs to calibrate better. John needs to find and reduce *noise* (functional and/or environmental).

You calibration curve, if you only measured the two points once, with noise

slope, m

You need to find and reduce effect of noise.

What if <u>you</u> input <u>noise</u> into the system?

- **3. EXAMPLE: PIPE FLOW**
 - you may need a pump

$$\dot{W}[W] = v[m/s] \left(\frac{\pi (D[m])^2}{4}\right) \Delta P[Pa]$$

• maybe there's roughness in the pipe \Rightarrow friction \Rightarrow pressure drop, ΔP

Pressure drop in a pipe due to friction

$$\Delta P = f \frac{L}{D} \frac{\rho v^2}{2}$$

Friction factor, f - from the Haaland Equation $f = \left\{ -1.8 \log_{10} \left[\left(\frac{\varepsilon/D}{3.7} \right)^{1.11} + \frac{6.9 \,\mu}{\rho D \,v} \right] \right\}^{-2}$

Plug, chug, cobble together, and deploy your amazing engineered water system...

Today...

Your design works.

You're a hero.

TCH - IED Robust Design, page 19 of 33

Tomorrow...

Did you start a war?

TCH - IED Robust Design, page 20 of 33

Was your computation of the friction factor robust?

	rho =	999.2	kg/m3	water density at 20 deg C				
	mu =	9.85E-004	N.s/m2	water viscosity at 20 deg C		eg C		
	L =	200	m	length of pi	be			
material	e [mm]	D [m]	v [m/s]	m-dot [kg/s	f [-]	DP [Pa]	W-dot [W]	gpm
extreme	0	0.1	0.1	0.8	0.031	307	0.24	12.4
glass	0.001	0.1	0.1	0.8	0.031	307	0.24	12.4
stainless steel	0.03	0.1	0.1	0.8	0.031	311	0.24	12.4
cast iron	0.3	0.1	0.1	0.8	0.035	348	0.27	12.4
concrete	1	0.1	0.1	0.8	0.043	429	0.34	12.4
riveted steel	3	0.1	0.1	0.8	0.060	602	0.47	12.4
extreme	30	0.1	0.1	0.8	0.212	2119	1.66	12.4

$$f = \left\{ -1.8 \log_{10} \left[\left(\frac{\varepsilon / D}{3.7} \right)^{1.11} + \frac{6.9 \,\mu}{\rho D \,v} \right] \right\}^{-2}$$
$$\dot{W} [W] = v[m/s] \left(\frac{\pi (D[m])^2}{4} \right) \Delta P [Pa]$$

$$\Delta P = f \frac{L}{D} \frac{\rho v^2}{2}$$
$$\dot{m} = \rho v \left(\frac{\pi D^2}{4} \right)$$

TCH - IED Robust Design, page 21 of 33

If you know the roughness is small, you don't need to know the roughness well.

TCH - IED Robust Design, page 23 of 33

What about the other variables?

	rho =	999.2	kg/m3	water density at 20 deg C				
	mu =	9.85E-004	N.s/m2	water viscosity at 20 deg C				
	L =	200	m	length of pi	ре			
material	e [mm]	D [m]	v [m/s]	m-dot [kg/s	f [-]	DP [Pa]	W-dot [W]	gpm
copper -	0.01	0.1	0.1	0.8	0.031	308	0.24	12.4
copper	0.03	0.1	0.1	0.8	0.031	311	0.24	12.4
copper +	0.1	0.1	0.1	0.8	0.032	320	0.25	12.4
copper -	0.01	0.05	0.1	0.2	0.038	754	0.15	3.1
copper	0.03	0.05	0.1	0.2	0.038	761	0.15	3.1
copper +	0.1	0.05	0.1	0.2	0.039	789	0.15	3.1
copper -	0.01	0.05	0.4	0.8	0.026	8312	6.53	12.4
copper	0.03	0.05	0.4	0.8	0.027	8559	6.72	12.4
copper +	0.1	0.05	0.4	0.8	0.029	9405	7.39	12.4

 $D\downarrow$: lose flow rate, or lose money on pump?

4. MORE EXAMPLES

Oh, sure: that's great... if you have the equations!

So what if you don't?

The three methods of analysis

- analytical ← limited
- -numerical ~ expensive
- experimental ← more expensive, more insightful

Sustainable can-openers?

Table 1: Decision Matrix Comparing Electric and Manual Can Openers							
Keywords:	Convenience	Cost	Reliability	Overall ^{**}			
Weight:	40%	30%	30%	100%			
Electric	8*	4	6	6.2			
Manual	5	9	7	6.8			

*product ratings are focus group assessments on a 0-10 scale *sample calculation: 8(0.4) + 4(0.3) + 6(0.3) = 6.2

What is your confidence that you've made the right choice?

Tolerance Analysis on Decision Matrix

	convenience	cost	reliability			conve nie nce	cost	reliability	
	40%	30%	30%	100%		40%	30%	30%	100%
electric	8	4	6	6.2	electric	8	4	6	6.2
manual	5	9	7	6.8	manual	5	9	7	6.8
	40%	30%	30%	100%		50%	20%	30%	100%
electric	9	4	6	6.6	electric	8	4	6	6.6
manual	5	9	7	6.8	manual	5	9	7	6.4
	40%	30%	30%	100%		50%	30%	20%	100%
electric	8	4	6	6.2	electric	8	4	6	6.4
manual	4	9	7	6.4	manual	5	9	7	6.6

Now how confident are you?

Geometric Tolerancing

TCH - IED Robust Design, page 28 of 33

5. APPLICATIONS TO "QUALITY"

Which is better: to meet the specification or to hit the target

Genichi Taguchi engineer... who later became a statistician

Did what statisticians had been saying for decades...

but did it with the vocabulary of engineers

Quality is related to the <u>total loss to society</u> due to the response of a given product to <u>noise</u>. Quality is related to the <u>total loss to society</u> due to the response of a given product to noise.

Quantify QualitySignal-to-noise ratio:SNR or S/NS/N > 1 \Rightarrow more signal than noise

<u>Investigate Quality</u> Orthogonal Arrays (see text)

Methods for Investigating Quality

- tolerance analysis (examples above) lower cost, higher precision, not as robust (underestimates variation if significant sources of noise are not included)
- "Taguchi" methods (see text) higher cost, lower precision, much more robust
- response surface methodologies gives better insight into the "directions" to adjust parameters to get optimally robust designs
- and more....

The design objective:

Find a *setpoint*

(a combination of design parameter values) that <u>maximizes quality</u>

in the presence of

functional and environmental noise.

RISK

- 2. Risk
 - definitions
 - risk perception
 - risk assessment
 - risk management

(With content from Professor Wei Zhou, MANE)

1. DEFINITIONS

'risk [*noun*; from old Italian(?) *riscare* to run into trouble]

- the possibility of incurring misfortune,
 loss, or injury:
 PERIL
- something or
 someone that
 creates or poses
 a hazard

TCH - IED Robust Design, page 2 of 21

Which is safer?

A. Nuclear power

B. Roof-top solar

Which is safer?

- A. Nuclear power
- B. Roof-top solar

The risk? I start an argument that creates more **heat** than light

TCH - IED Robust Design, page 4 of 21

More viewpoints:

Take calculated risks. That isquite different from being rash.– General George Patton

Stupid risks make life worth living. – Homer Simpson

RISK: there is a risk that all of the oxygen will leave this room.

2. PERCEPTION OF RISK

Lake Nyos in Cameroon. 1,700 fatalities.

TCH - IED Robust Design, page 6 of 21

The concepts of "risk"

- an unwanted event which may or may not occur
- the cause of an unwanted event which may or may not occur
- the probability of an unwanted event which may or may not occur
- the severity of consequence of an unwanted event which may or may not occur

3. RISK ASSESSMENT

The "risk triplet":

- 1. What can go wrong?
 - 2. What is the likelihood?
 - 3. What are the consequences?

Typical Observed Error Rates – use of Software

	Error		
Source of Data	Character	Field	Distribution of Errors
Inheritance	2-5%	10-25%	50%
Preparation	2%	10%	
Transcription	0.06-0.5%	0.3-2.5%	40%
Entry	0.004%-0.03%	0.02-0.15%	
Software			10%

Software Accuracy (and Confidence)

Comparing calculations based on identical input data	Number of Significant Figures
Single-precision (32 bit) floating point value	7 - 8
Single-precision arithmetic results (approximate)	6
Same code under different computer architecture, operating system, and compiler	4
Same code under continual enhancement	1 - 2
Different codes that do the same thing	1

Examples of Risk Issues for Design Projects

Risk Issues

- Inaccurate / incomplete
 CAD models
- Tasks competing for inadequate funds
- Parts cannot be found or purchased
- Tasks competing for inadequate time
- Poor tolerances on system components

Consequences

- = System cannot be assembled
- = Run out of money
- = Don't finish on time
- = System does not meet specifications

Probability of Occurrence

Estimated by expert judgment or from data drawn from previous experience and events.

Probability of Occurrence

Estimated by expert judgment or from data drawn from previous experience and events.

Question: did you experience delay in your mini-project?

A. YesB. No

Probability of Occurrence

Estimated by expert judgment or from data drawn from previous experience and events.

Question: did you experience delay in your mini-project?

A. Yes B. No

Probability of delay $\approx #A's / total polled$

risk = severity of the event × probability of occurrence

Probability of Occurrence	

- Likely $\geq 80\%$ chance
- Probably 20 to 80% chance
- Unlikely $\leq 20\%$ chance

Severity of Impact

- High (5) a major show stopper
- Moderate (3) project proceeds forward with impacts on quality, cost and time
- Low (1) minor impact on quality, cost and time

Sources of Parameter Uncertainty

- Measurement errors
- Systematic errors
- Sampling errors
- Unpredictability – e.g., chaos

Linguistic imprecision

 – e.g., using adjectives

Risk Assessment Outcomes

Probability

Severity

4. MANAGEMENT OF RISK

- 1. What can be done?
- What options are available and what are their associate trade-offs (costs / benefits / risks)?
- 3. What are the impacts of current decisions on future options?

Risk Management Options

risk-based decision-making

Your process and product should protect:

- Safety,
- Health, and
- Environment

Project management role

scheduletask prioritizationbudgetresource allocation

Time-tested wisdoms:

While solving a problem, avoid creation of other problems ("Global solutions invite global problems")

Prevention of unwanted events is cheaper and easier than dealing with the aftermath