
1© 2016 The MathWorks, Inc.

Optimizing and Accelerating Your MATLAB Code

Debbi Cohen

RPI Account Manager

Adam Sifounakis

Application Engineer

March 30, 2016

3

2015 NASA Software Award – Orion GN&C

 Orion GN&C Flight Software for Exploration Flight Test 1 (EFT-1) was

selected for NASA Software of the Year award this year

 Key highlights;

– Created NASA – Orion GN&C: MATLAB and Simulink Standards

 Supported model interoperability and code generation

– Generated over 60K lines of code by CDR

– Developed more accurate control algorithms that met project schedule

4

Example Projects With MathWorks

 Customers using Simulink interface to Goddard cFE software:

– APL

– Cornell University Space Systems Design Studio

– NASA Ames

 Recent projects:

– Cornell University Space Systems Design Studio – VIOLET (in progress)

– Goddard – GEDI (in progress)

– Goddard – NICER (in progress)

 Completed projects:

– Ames – LADEE
 Heavily involved with onboard flight software

– Boeing – X40A

– Ames – SPHERES

– Lockheed Martin – IRIS Satellite

– JPL – MER Rovers

– Lockheed Martin – Mars Reconnaissance Orbiter

– JPL – Deep Space 1

5

Laminar Flame Speed Calculations

6

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

7

Example: Block Processing Images

 Calculate a function at grid points

 Take the mean of larger blocks

 Analyze and improve performance

8

Effect of Not Preallocating Memory

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4

4

7

4

7

4

7

12

X(3) = 12X(2) = 7

9

Benefit of Preallocation

x = zeros(3,1)

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

4

7

0

4

7

12

10

MATLAB Underlying Technologies

 Execution Engine (>=R2015b)

– All MATLAB code is just-in-time compiled

– Improves “Nth run” performance

 Commercial Libraries

– BLAS: Basic Linear Algebra Subroutines

– LAPACK: Linear Algebra Package

– IPP: Intel Performance Primitives

– FFTW: Fastest Fourier Transform in the West

11

Other Best Practices

 Avoid “clear all”

– Use “clear” or “clearvars” instead

 Use functions instead of scripts

 Keep files to less than 500 lines

 Avoid “introspection” functions

– E.g. “dbstack”, “inputname”, “exist”, “whos”

http://www.mathworks.com/help/releases/R2015b/matlab/matlab_prog/techniques-for-improving-performance.html

http://www.mathworks.com/help/releases/R2015b/matlab/matlab_prog/techniques-for-improving-performance.html

12

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

13

Example: Block Processing Images

 Run and time program

 Identify bottlenecks

 Improve run time

14

Profiler

 Total number of function calls

 Time per function call

 Self time in a function call

 Code coverage

15

Best Practices

 Minimize file I/O

 Reuse existing graphics components

 Avoid printing to Command Window

16

Steps for Improving Performance

 First get code working

 Speed up code with core MATLAB

 Include compiled languages and additional hardware

17

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

18

Why Engineers Translate MATLAB to C

 Implement C code on processors or hand off to software engineers

 Integrate MATLAB algorithms within existing C environments

 Prototype MATLAB algorithms as standalone executables

 Accelerate MATLAB algorithms

.c

.lib

.dll

.exe

MEX

19

Challenges with Manual Translation of MATLAB to C

 Separate functional and implementation specifications

– Leads to multiple implementations which are inconsistent

– Hard to modify requirements during development

– Difficult to keep MATLAB code and C code in sync

 Manual coding errors

 Time consuming and expensive process

Re-code in

C/C++

Algorithm Design

in MATLAB

MEX

.lib

.dll

.exe

.citerate

20

Automatic Translation of MATLAB to C

 Maintain one design in MATLAB

 Design faster and get to C quickly

 Test more systematically and frequently

 Spend more time improving algorithms in MATLAB

MEX

.lib

.dll

.exe

.c

verify /accelerate

ite
ra
te

21

Acceleration Using MEX

 Speedup factor will vary

 When you may see a speedup:

– Often for communications or signal processing

– Likely for loops with states or when vectorization is not possible

– Always for fixed point

 When you may not see a speedup:

– MATLAB implicitly multithreads computation

– Built in functions that call BLAS or IPP

22

Supported Language Features and Functions

 New functions and features are supported each release

Matrices and

Arrays
Data Types Programming Constructs Functions

• Matrix operations

• N-dimensional arrays

• Subscripting

• Frames

• Persistent variables

• Global variables

• Complex numbers

• Integer math

• Double/single-precision

• Fixed-point arithmetic

• Characters

• Structures

• Cell arrays

• Numeric class

• Variable-sized data

• MATLAB Class

• System objects

• Arithmetic, relational, and logical

operators

• Program control
(if, for, while, switch)

• MATLAB functions and subfunctions

• Variable-length argument lists

• Function handles

Supported algorithms

• More than 1100 MATLAB operators

(R2015b), functions, and System

objects for:

• Communications

• Computer vision

• Image processing

• Phased Array signal processing

• Robotics System Toolbox

• Signal processing

• Statistic & Machine Learning

Toolbox

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

23

More Resources

 Product Page:

– http://www.mathworks.com/products/matlab-coder

 On demand webinar, “MATLAB to C Made Easy”:

– http://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html

http://www.mathworks.com/products/matlab-coder
http://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html

24

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

25

Parallel Computing enables you to…

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

26

Parallel Computing with MATLAB

TOOLBOXES

BLOCKSETS

Worker

Worker

Worker

Worker

Worker

Worker

27

Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

28

Example: Cell Phone Tower Optimization

 Run optimization with and without parallel

 Run different problem sizes

29

Products Providing Parallel Support

 Math, Statistics, Optimization

 Image Processing, Signal Processing, and Computer Vision

 Control System Design and Analysis

 Computational Biology

 Code Generation

30

Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

 Simple programming constructs

– parfor, batch

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

31

Embarrassingly Parallel Tasks

 No dependencies or communication between tasks

 Examples:

– Monte Carlo simulations

– Parameter sweeps

– Same operation on many files

Time Time

32

Mechanics of parfor Loops

a = zeros(10, 1)

parfor i = 1:10

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

33

Example: Parameter Sweep

 Parameter sweep

– Truss under a dynamic load

– Sweeping over cross sectional area and number of elements

Displacement, d

Load

Length, L

Height, H

N = 4

34

Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

 Simple programming constructs

– parfor, batch

 Full control of parallelization

– spmd, parfeval

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

38

Migrate to Cluster / Cloud

 Use MATLAB Distributed Computing Server

 Change hardware without changing algorithm

39

 For graphics acceleration and scientific computing

 Many parallel processors

 Dedicated high speed memory

Graphics Processing Units (GPUs)

40

GPU Requirements

 Parallel Computing Toolbox requires NVIDIA GPUs

 www.nvidia.com/object/cuda_gpus.html

MATLAB Release Required Compute Capability

MATLAB R2014b and newer releases 2.0 or greater

MATLAB R2014a and earlier releases 1.3 or greater

http://www.nvidia.com/object/cuda_gpus.html

41

Programming with GPUs

 Built in toolbox support

 Simple programming constructs

– gpuArray, gather

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

42

Example: Wave Equation

 Solve 2nd order wave equation with spectral methods

 Use CPU and GPU

43

Benchmark: Solving 2D Wave Equation – CPU vs GPU

Intel Xeon Processor W3550 (3.07GHz), NVIDIA Tesla K20c GPU

44

Programming with GPUs

 Built in toolbox support

 Simple programming constructs

– gpuArray, gather

 Advanced programming constructs

– spmd, arrayfun

 Interface for experts

– CUDAKernel, mex

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

45

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

46

Key Takeaways

 Consider the performance benefits of vector and matrix operations

 Analyze your code for bottlenecks to address the critical areas

 Leverage MATLAB Coder to speed up functions with generated C code

 Leverage parallel computing tools to take advantage of additional hardware

47

Some Other Valuable Resources

 MATLAB Documentation

– MATLAB Advanced Software Development Performance and Memory

 Accelerating MATLAB algorithms and applications

– http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-

algorithms-and-applications.html

 Loren Shure’s Blog: “The Art of MATLAB”

– http://blogs.mathworks.com/loren/

 MATLAB Question and Answers Site: MATLAB Answers

– http://www.mathworks.com/matlabcentral/answers/

http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
http://blogs.mathworks.com/loren/
http://www.mathworks.com/matlabcentral/answers/

48© 2016 The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other

product or brand names may be trademarks or registered trademarks of their respective holders. © 2016 The MathWorks, Inc.

