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2015 NASA Software Award – Orion GN&C

 Orion GN&C Flight Software for Exploration Flight Test 1 (EFT-1) was 

selected for NASA Software of the Year award this year

 Key highlights;

– Created NASA – Orion GN&C: MATLAB and Simulink Standards

 Supported model interoperability and code generation

– Generated over 60K lines of code by CDR

– Developed more accurate control algorithms that met project schedule
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Example Projects With MathWorks

 Customers using Simulink interface to Goddard cFE software:

– APL

– Cornell University Space Systems Design Studio

– NASA Ames

 Recent projects:

– Cornell University Space Systems Design Studio – VIOLET (in progress)

– Goddard – GEDI (in progress)

– Goddard – NICER (in progress)

 Completed projects:

– Ames – LADEE
 Heavily involved with onboard flight software

– Boeing – X40A

– Ames – SPHERES

– Lockheed Martin – IRIS Satellite

– JPL – MER Rovers

– Lockheed Martin – Mars Reconnaissance Orbiter

– JPL – Deep Space 1
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Laminar Flame Speed Calculations
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 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda
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Example: Block Processing Images

 Calculate a function at grid points

 Take the mean of larger blocks

 Analyze and improve performance
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Effect of Not Preallocating Memory
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Benefit of Preallocation
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MATLAB Underlying Technologies

 Execution Engine (>=R2015b)

– All MATLAB code is just-in-time compiled

– Improves “Nth run” performance

 Commercial Libraries

– BLAS: Basic Linear Algebra Subroutines

– LAPACK: Linear Algebra Package

– IPP: Intel Performance Primitives

– FFTW: Fastest Fourier Transform in the West
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Other Best Practices

 Avoid “clear all”

– Use “clear” or “clearvars” instead

 Use functions instead of scripts

 Keep files to less than 500 lines

 Avoid “introspection” functions

– E.g. “dbstack”, “inputname”, “exist”, “whos”

http://www.mathworks.com/help/releases/R2015b/matlab/matlab_prog/techniques-for-improving-performance.html

http://www.mathworks.com/help/releases/R2015b/matlab/matlab_prog/techniques-for-improving-performance.html
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Example: Block Processing Images

 Run and time program

 Identify bottlenecks 

 Improve run time
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Profiler

 Total number of function calls

 Time per function call

 Self time in a function call

 Code coverage
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Best Practices

 Minimize file I/O

 Reuse existing graphics components

 Avoid printing to Command Window
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Steps for Improving Performance

 First get code working

 Speed up code with core MATLAB

 Include compiled languages and additional hardware
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Why Engineers Translate MATLAB to C

 Implement C code on processors or hand off to software engineers

 Integrate MATLAB algorithms within existing C environments

 Prototype MATLAB algorithms as standalone executables

 Accelerate MATLAB algorithms

.c

.lib

.dll

.exe

MEX
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Challenges with Manual Translation of MATLAB to C

 Separate functional and implementation specifications

– Leads to multiple implementations which are inconsistent

– Hard to modify requirements during development

– Difficult to keep MATLAB code and C code in sync

 Manual coding errors

 Time consuming and expensive process

Re-code in

C/C++

Algorithm Design

in MATLAB

MEX

.lib

.dll

.exe

.citerate
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Automatic Translation of MATLAB to C

 Maintain one design in MATLAB

 Design faster and get to C quickly

 Test more systematically and frequently

 Spend more time improving algorithms in MATLAB

MEX

.lib

.dll

.exe

.c

verify /accelerate

ite
ra
te
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Acceleration Using MEX

 Speedup factor will vary

 When you may see a speedup:

– Often for communications or signal processing

– Likely for loops with states or when vectorization is not possible

– Always for fixed point

 When you may not see a speedup:

– MATLAB implicitly multithreads computation

– Built in functions that call BLAS or IPP
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Supported Language Features and Functions

 New functions and features are supported each release

Matrices and 

Arrays
Data Types Programming Constructs Functions

• Matrix operations

• N-dimensional arrays

• Subscripting

• Frames

• Persistent variables 

• Global variables

• Complex numbers

• Integer math

• Double/single-precision

• Fixed-point arithmetic

• Characters

• Structures

• Cell arrays

• Numeric class

• Variable-sized data

• MATLAB Class

• System objects

• Arithmetic, relational, and logical 

operators

• Program control 
(if, for, while, switch)

• MATLAB functions and subfunctions

• Variable-length argument lists

• Function handles

Supported algorithms

• More than 1100 MATLAB operators 

(R2015b), functions, and System 

objects for:

• Communications

• Computer vision

• Image processing

• Phased Array signal processing

• Robotics System Toolbox

• Signal processing

• Statistic & Machine Learning 

Toolbox

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html
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More Resources

 Product Page: 

– http://www.mathworks.com/products/matlab-coder

 On demand webinar, “MATLAB to C Made Easy”:

– http://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html

http://www.mathworks.com/products/matlab-coder
http://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html
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Parallel Computing enables you to…

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42
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15 30 45
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21 36 51

22 37 52

Speed up Computations Work with Large Data
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Parallel Computing with MATLAB

TOOLBOXES

BLOCKSETS

Worker

Worker

Worker

Worker

Worker

Worker
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Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)
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Example: Cell Phone Tower Optimization

 Run optimization with and without parallel

 Run different problem sizes
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Products Providing Parallel Support

 Math, Statistics, Optimization

 Image Processing, Signal Processing, and Computer Vision

 Control System Design and Analysis

 Computational Biology

 Code Generation
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Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

 Simple programming constructs

– parfor, batch
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Embarrassingly Parallel Tasks

 No dependencies or communication between tasks

 Examples:

– Monte Carlo simulations

– Parameter sweeps

– Same operation on many files

Time Time
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Mechanics of parfor Loops

a = zeros(10, 1)

parfor i = 1:10 

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
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Example: Parameter Sweep

 Parameter sweep

– Truss under a dynamic load

– Sweeping over cross sectional area and number of elements

Displacement, d

Load

Length, L

Height, H

N = 4
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Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

 Simple programming constructs

– parfor, batch

 Full control of parallelization

– spmd, parfeval
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Migrate to Cluster / Cloud

 Use MATLAB Distributed Computing Server

 Change hardware without changing algorithm
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 For graphics acceleration and scientific computing

 Many parallel processors

 Dedicated high speed memory

Graphics Processing Units (GPUs)
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GPU Requirements

 Parallel Computing Toolbox requires NVIDIA GPUs

 www.nvidia.com/object/cuda_gpus.html

MATLAB Release Required Compute Capability

MATLAB R2014b and newer releases 2.0 or greater

MATLAB R2014a and earlier releases 1.3 or greater

http://www.nvidia.com/object/cuda_gpus.html
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Programming with GPUs

 Built in toolbox support

 Simple programming constructs

– gpuArray, gather
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Example: Wave Equation

 Solve 2nd order wave equation with spectral methods

 Use CPU and GPU
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Benchmark: Solving 2D Wave Equation – CPU vs GPU

Intel Xeon Processor W3550 (3.07GHz), NVIDIA Tesla K20c GPU
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Programming with GPUs

 Built in toolbox support

 Simple programming constructs

– gpuArray, gather

 Advanced programming constructs

– spmd, arrayfun

 Interface for experts

– CUDAKernel, mex
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Key Takeaways

 Consider the performance benefits of vector and matrix operations

 Analyze your code for bottlenecks to address the critical areas

 Leverage MATLAB Coder to speed up functions with generated C code

 Leverage parallel computing tools to take advantage of additional hardware
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Some Other Valuable Resources

 MATLAB Documentation

– MATLAB  Advanced Software Development  Performance and  Memory

 Accelerating MATLAB algorithms and applications

– http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-

algorithms-and-applications.html

 Loren Shure’s Blog: “The Art of MATLAB”

– http://blogs.mathworks.com/loren/

 MATLAB Question and Answers Site: MATLAB Answers

– http://www.mathworks.com/matlabcentral/answers/

http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
http://blogs.mathworks.com/loren/
http://www.mathworks.com/matlabcentral/answers/
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