
1© 2016 The MathWorks, Inc.

Optimizing and Accelerating Your MATLAB Code

Debbi Cohen

RPI Account Manager

Adam Sifounakis

Application Engineer

March 30, 2016

3

2015 NASA Software Award – Orion GN&C

 Orion GN&C Flight Software for Exploration Flight Test 1 (EFT-1) was

selected for NASA Software of the Year award this year

 Key highlights;

– Created NASA – Orion GN&C: MATLAB and Simulink Standards

 Supported model interoperability and code generation

– Generated over 60K lines of code by CDR

– Developed more accurate control algorithms that met project schedule

4

Example Projects With MathWorks

 Customers using Simulink interface to Goddard cFE software:

– APL

– Cornell University Space Systems Design Studio

– NASA Ames

 Recent projects:

– Cornell University Space Systems Design Studio – VIOLET (in progress)

– Goddard – GEDI (in progress)

– Goddard – NICER (in progress)

 Completed projects:

– Ames – LADEE
 Heavily involved with onboard flight software

– Boeing – X40A

– Ames – SPHERES

– Lockheed Martin – IRIS Satellite

– JPL – MER Rovers

– Lockheed Martin – Mars Reconnaissance Orbiter

– JPL – Deep Space 1

5

Laminar Flame Speed Calculations

6

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

7

Example: Block Processing Images

 Calculate a function at grid points

 Take the mean of larger blocks

 Analyze and improve performance

8

Effect of Not Preallocating Memory

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4

4

7

4

7

4

7

12

X(3) = 12X(2) = 7

9

Benefit of Preallocation

x = zeros(3,1)

x(1) = 4

x(2) = 7

x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

4

7

0

4

7

12

10

MATLAB Underlying Technologies

 Execution Engine (>=R2015b)

– All MATLAB code is just-in-time compiled

– Improves “Nth run” performance

 Commercial Libraries

– BLAS: Basic Linear Algebra Subroutines

– LAPACK: Linear Algebra Package

– IPP: Intel Performance Primitives

– FFTW: Fastest Fourier Transform in the West

11

Other Best Practices

 Avoid “clear all”

– Use “clear” or “clearvars” instead

 Use functions instead of scripts

 Keep files to less than 500 lines

 Avoid “introspection” functions

– E.g. “dbstack”, “inputname”, “exist”, “whos”

http://www.mathworks.com/help/releases/R2015b/matlab/matlab_prog/techniques-for-improving-performance.html

http://www.mathworks.com/help/releases/R2015b/matlab/matlab_prog/techniques-for-improving-performance.html

12

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

13

Example: Block Processing Images

 Run and time program

 Identify bottlenecks

 Improve run time

14

Profiler

 Total number of function calls

 Time per function call

 Self time in a function call

 Code coverage

15

Best Practices

 Minimize file I/O

 Reuse existing graphics components

 Avoid printing to Command Window

16

Steps for Improving Performance

 First get code working

 Speed up code with core MATLAB

 Include compiled languages and additional hardware

17

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

18

Why Engineers Translate MATLAB to C

 Implement C code on processors or hand off to software engineers

 Integrate MATLAB algorithms within existing C environments

 Prototype MATLAB algorithms as standalone executables

 Accelerate MATLAB algorithms

.c

.lib

.dll

.exe

MEX

19

Challenges with Manual Translation of MATLAB to C

 Separate functional and implementation specifications

– Leads to multiple implementations which are inconsistent

– Hard to modify requirements during development

– Difficult to keep MATLAB code and C code in sync

 Manual coding errors

 Time consuming and expensive process

Re-code in

C/C++

Algorithm Design

in MATLAB

MEX

.lib

.dll

.exe

.citerate

20

Automatic Translation of MATLAB to C

 Maintain one design in MATLAB

 Design faster and get to C quickly

 Test more systematically and frequently

 Spend more time improving algorithms in MATLAB

MEX

.lib

.dll

.exe

.c

verify /accelerate

ite
ra
te

21

Acceleration Using MEX

 Speedup factor will vary

 When you may see a speedup:

– Often for communications or signal processing

– Likely for loops with states or when vectorization is not possible

– Always for fixed point

 When you may not see a speedup:

– MATLAB implicitly multithreads computation

– Built in functions that call BLAS or IPP

22

Supported Language Features and Functions

 New functions and features are supported each release

Matrices and

Arrays
Data Types Programming Constructs Functions

• Matrix operations

• N-dimensional arrays

• Subscripting

• Frames

• Persistent variables

• Global variables

• Complex numbers

• Integer math

• Double/single-precision

• Fixed-point arithmetic

• Characters

• Structures

• Cell arrays

• Numeric class

• Variable-sized data

• MATLAB Class

• System objects

• Arithmetic, relational, and logical

operators

• Program control
(if, for, while, switch)

• MATLAB functions and subfunctions

• Variable-length argument lists

• Function handles

Supported algorithms

• More than 1100 MATLAB operators

(R2015b), functions, and System

objects for:

• Communications

• Computer vision

• Image processing

• Phased Array signal processing

• Robotics System Toolbox

• Signal processing

• Statistic & Machine Learning

Toolbox

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

23

More Resources

 Product Page:

– http://www.mathworks.com/products/matlab-coder

 On demand webinar, “MATLAB to C Made Easy”:

– http://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html

http://www.mathworks.com/products/matlab-coder
http://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html

24

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

25

Parallel Computing enables you to…

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

26

Parallel Computing with MATLAB

TOOLBOXES

BLOCKSETS

Worker

Worker

Worker

Worker

Worker

Worker

27

Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

28

Example: Cell Phone Tower Optimization

 Run optimization with and without parallel

 Run different problem sizes

29

Products Providing Parallel Support

 Math, Statistics, Optimization

 Image Processing, Signal Processing, and Computer Vision

 Control System Design and Analysis

 Computational Biology

 Code Generation

30

Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

 Simple programming constructs

– parfor, batch

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

31

Embarrassingly Parallel Tasks

 No dependencies or communication between tasks

 Examples:

– Monte Carlo simulations

– Parameter sweeps

– Same operation on many files

Time Time

32

Mechanics of parfor Loops

a = zeros(10, 1)

parfor i = 1:10

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

33

Example: Parameter Sweep

 Parameter sweep

– Truss under a dynamic load

– Sweeping over cross sectional area and number of elements

Displacement, d

Load

Length, L

Height, H

N = 4

34

Programming Parallel Applications

 Built in support

– ..., ‘UseParallel’, true)

 Simple programming constructs

– parfor, batch

 Full control of parallelization

– spmd, parfeval

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

38

Migrate to Cluster / Cloud

 Use MATLAB Distributed Computing Server

 Change hardware without changing algorithm

39

 For graphics acceleration and scientific computing

 Many parallel processors

 Dedicated high speed memory

Graphics Processing Units (GPUs)

40

GPU Requirements

 Parallel Computing Toolbox requires NVIDIA GPUs

 www.nvidia.com/object/cuda_gpus.html

MATLAB Release Required Compute Capability

MATLAB R2014b and newer releases 2.0 or greater

MATLAB R2014a and earlier releases 1.3 or greater

http://www.nvidia.com/object/cuda_gpus.html

41

Programming with GPUs

 Built in toolbox support

 Simple programming constructs

– gpuArray, gather

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

42

Example: Wave Equation

 Solve 2nd order wave equation with spectral methods

 Use CPU and GPU

43

Benchmark: Solving 2D Wave Equation – CPU vs GPU

Intel Xeon Processor W3550 (3.07GHz), NVIDIA Tesla K20c GPU

44

Programming with GPUs

 Built in toolbox support

 Simple programming constructs

– gpuArray, gather

 Advanced programming constructs

– spmd, arrayfun

 Interface for experts

– CUDAKernel, mex

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

45

 Optimizing for loops and using vector and matrix operations

 Finding and addressing bottlenecks

 Generating C code and incorporating it into your application

 Utilizing additional hardware and processing power

 Summary and resources

Agenda

46

Key Takeaways

 Consider the performance benefits of vector and matrix operations

 Analyze your code for bottlenecks to address the critical areas

 Leverage MATLAB Coder to speed up functions with generated C code

 Leverage parallel computing tools to take advantage of additional hardware

47

Some Other Valuable Resources

 MATLAB Documentation

– MATLAB  Advanced Software Development  Performance and Memory

 Accelerating MATLAB algorithms and applications

– http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-

algorithms-and-applications.html

 Loren Shure’s Blog: “The Art of MATLAB”

– http://blogs.mathworks.com/loren/

 MATLAB Question and Answers Site: MATLAB Answers

– http://www.mathworks.com/matlabcentral/answers/

http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
http://blogs.mathworks.com/loren/
http://www.mathworks.com/matlabcentral/answers/

48© 2016 The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other

product or brand names may be trademarks or registered trademarks of their respective holders. © 2016 The MathWorks, Inc.

