

Optimizing and Accelerating Your MATLAB Code

Debbi Cohen RPI Account Manager

Adam Sifounakis Application Engineer

2015 NASA Software Award – Orion GN&C

Orion GN&C Flight Software for Exploration Flight Test 1 (EFT-1) was

selected for NASA Software of the Year award this year

- Key highlights;
 - Created NASA Orion GN&C: MATLAB and Simulink Standards
 - Supported model interoperability and code generation
 - Generated over 60K lines of code by CDR
 - Developed more accurate control algorithms that met project schedule

Example Projects With MathWorks

- Customers using Simulink interface to Goddard cFE software:
 - APL
 - Cornell University Space Systems Design Studio
 - NASA Ames
- Recent projects:
 - Cornell University Space Systems Design Studio VIOLET (in progress)
 - Goddard GEDI (in progress)
 - Goddard NICER (in progress)
- Completed projects:
 - Ames LADEE
 - Heavily involved with onboard flight software
 - Boeing X40A
 - Ames SPHERES
 - Lockheed Martin IRIS Satellite
 - JPL MER Rovers
 - Lockheed Martin Mars Reconnaissance Orbiter
 - JPL Deep Space 1

Laminar Flame Speed Calculations

Agenda

- Optimizing for loops and using vector and matrix operations
- Finding and addressing bottlenecks
- Generating C code and incorporating it into your application
- Utilizing additional hardware and processing power
- Summary and resources

Example: Block Processing Images

- Calculate a function at grid points
- Take the mean of larger blocks
- Analyze and improve performance

Effect of Not Preallocating Memory

$$x(1) = 4$$

 $x(2) = 7$
 $x(3) = 12$

Benefit of Preallocation

MATLAB Underlying Technologies

- Execution Engine (>=R2015b)
 - All MATLAB code is just-in-time compiled
 - Improves "Nth run" performance

- Commercial Libraries
 - BLAS: Basic Linear Algebra Subroutines
 - LAPACK: Linear Algebra Package
 - IPP: Intel Performance Primitives
 - FFTW: Fastest Fourier Transform in the West

Other Best Practices

- Avoid "clear all"
 - Use "clear" or "clearvars" instead
- Use functions instead of scripts
- Keep files to less than 500 lines
- Avoid "introspection" functions
 - E.g. "dbstack", "inputname", "exist", "whos"

http://www.mathworks.com/help/releases/R2015b/matlab/matlab_prog/techniques-for-improving-performance.html

Agenda

- Optimizing for loops and using vector and matrix operations
- Finding and addressing bottlenecks
- Generating C code and incorporating it into your application
- Utilizing additional hardware and processing power
- Summary and resources

Example: Block Processing Images

- Run and time program
- Identify bottlenecks
- Improve run time

Profiler

- Total number of function calls
- Time per function call
- Self time in a function call
- Code coverage

le Edit Debug Window Help)			
🗭 🔶 🟠 🖕				
Start Profiling Run this code:				
Profile Summarv				
Generated 31-Aug-2015 15:28:51 using pe	erformance ti	me.		
Function Name	<u>Calls</u>	<u>Total Time</u>	Self Time*	Total Time Plot (dark band = self time)
<u>testFit</u>	1	6.525 s	3.591 s	
<u>xlswrite</u>	10	1.964 s	0.024 s	
xlswrite>ExecuteWrite	10	1.919 s	0.394 s	
iofun\private\openExcelWorkbook	10	0.894 s	0.720 s	
onCleanup>onCleanup.delete	10	0.583 s	0.001 s	
xlswrite>@()xlsCleanup(Excel.file)	10	0.582 s	0.002 s	
iofun\private\xIsCleanup	10	0.580 s	0.579 s	
<u>close</u>	1	0.477 s	0.005 s	
<u>close>request_close</u>	1	0.440 s	0.026 s	•
closereq	10	0.390 s	0.376 s	•
subplot	20	0.163 s	0.090 s	T
title	20	0 100 -	0 10/ -	1

Best Practices

- Minimize file I/O
- Reuse existing graphics components
- Avoid printing to Command Window

Comman	d Window				\odot
	0.6010	0.8987	0.3676	0.4792	0.87^
	0.1969	0.5906	0.0684	0.0408	0.73
	0.7029	0.1359	0.0803	0.1856	0.44
	0.9487	0.1377	0.9798	0.1154	0.89
	0.9230	0.1091	0.6545	0.3363	0.90-
6	0.7524	0.1111	0.0034	0.5273	0.07
fx .	0.3987	0.1840	0.0568	0.6562	0.24-

Steps for Improving Performance

- First get code working
- Speed up code with core MATLAB
- Include compiled languages and additional hardware

Agenda

- Optimizing for loops and using vector and matrix operations
- Finding and addressing bottlenecks
- Generating C code and incorporating it into your application
- Utilizing additional hardware and processing power
- Summary and resources

Why Engineers Translate MATLAB to C

- Implement C code on processors or hand off to software engineers
- Integrate MATLAB algorithms within existing C environments
- Prototype MATLAB algorithms as standalone executables
- Accelerate MATLAB algorithms

.exe

Challenges with Manual Translation of MATLAB to C

- Separate functional and implementation specifications
 - Leads to multiple implementations which are inconsistent
 - Hard to modify requirements during development
 - Difficult to keep MATLAB code and C code in sync
- Manual coding errors
- Time consuming and expensive process

Automatic Translation of MATLAB to C

- Maintain one design in MATLAB
- Design faster and get to C quickly
- Test more systematically and frequently
- Spend more time improving algorithms in MATLAB

Acceleration Using MEX

- Speedup factor will vary
- When you **may** see a speedup:
 - Often for communications or signal processing
 - Likely for loops with states or when vectorization is not possible
 - Always for fixed point
- When you **may not** see a speedup:
 - MATLAB implicitly multithreads computation
 - Built in functions that call BLAS or IPP

Supported Language Features and Functions

New functions and features are supported each release

Matrices and Arrays	Data Types	Programming Constructs	Functions
 Matrix operations N-dimensional arrays Subscripting Frames Persistent variables Global variables 	 Complex numbers Integer math Double/single-precision Fixed-point arithmetic Characters Structures Cell arrays Numeric class Variable-sized data MATLAB Class System objects 	 Arithmetic, relational, and logical operators Program control (if, for, while, switch) 	 MATLAB functions and subfunctions Variable-length argument lists Function handles Supported algorithms More than 1100 MATLAB operators (R2015b), functions, and System objects for: Communications Computer vision Image processing Phased Array signal processing Robotics System Toolbox Signal processing Statistic & Machine Learning Toolbox

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

More Resources

- Product Page:
 - http://www.mathworks.com/products/matlab-coder
- On demand webinar, "MATLAB to C Made Easy":
 - <u>http://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html</u>

Agenda

- Optimizing for loops and using vector and matrix operations
- Finding and addressing bottlenecks
- Generating C code and incorporating it into your application
- Utilizing additional hardware and processing power
- Summary and resources

Parallel Computing enables you to...

Parallel Computing with MATLAB

Programming Parallel Applications

- Built in support
 - -..., 'UseParallel', true)

Example: Cell Phone Tower Optimization

- Run optimization with and without parallel
- Run different problem sizes

Products Providing Parallel Support

- Math, Statistics, Optimization
- Image Processing, Signal Processing, and Computer Vision
- Control System Design and Analysis
- Computational Biology
- Code Generation

Programming Parallel Applications

- Built in support
 - -..., 'UseParallel', true)
- Simple programming constructs
 - -parfor, batch

Embarrassingly Parallel Tasks

- No dependencies or communication between tasks
- Examples:
 - Monte Carlo simulations
 - Parameter sweeps
 - Same operation on many files

Mechanics of parfor Loops

Example: Parameter Sweep

Parameter sweep

- Truss under a dynamic load
- Sweeping over cross sectional area and number of elements

Programming Parallel Applications

- Built in support
 - -..., 'UseParallel', true)
- Simple programming constructs
 - -parfor, batch
- Full control of parallelization
 - spmd, parfeval

Migrate to Cluster / Cloud

- Use MATLAB Distributed Computing Server
- Change hardware without changing algorithm

Graphics Processing Units (GPUs)

- For graphics acceleration and scientific computing
- Many parallel processors
- Dedicated high speed memory

GPU Requirements

- Parallel Computing Toolbox requires NVIDIA GPUs
- www.nvidia.com/object/cuda_gpus.html

MATLAB Release	Required Compute Capability
MATLAB R2014b and newer releases	2.0 or greater
MATLAB R2014a and earlier releases	1.3 or greater

Programming with GPUs

- Built in toolbox support
- Simple programming constructs
 - gpuArray, gather

Example: Wave Equation

- Solve 2nd order wave equation with spectral methods
- Use CPU and GPU

Benchmark: Solving 2D Wave Equation – CPU vs GPU

Intel Xeon Processor W3550 (3.07GHz), NVIDIA Tesla K20c GPU

Programming with GPUs

- Built in toolbox support
- Simple programming constructs
 - gpuArray, gather
- Advanced programming constructs
 - spmd, arrayfun
- Interface for experts
 - CUDAKernel, mex

Agenda

- Optimizing for loops and using vector and matrix operations
- Finding and addressing bottlenecks
- Generating C code and incorporating it into your application
- Utilizing additional hardware and processing power
- Summary and resources

Key Takeaways

- Consider the performance benefits of vector and matrix operations
- Analyze your code for bottlenecks to address the critical areas
- Leverage MATLAB Coder to speed up functions with generated C code
- Leverage parallel computing tools to take advantage of additional hardware

Some Other Valuable Resources

- MATLAB Documentation
 - MATLAB \rightarrow Advanced Software Development \rightarrow Performance and Memory
- Accelerating MATLAB algorithms and applications
 - <u>http://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html</u>
- Loren Shure's Blog: "The Art of MATLAB"
 - <u>http://blogs.mathworks.com/loren/</u>
- MATLAB Question and Answers Site: MATLAB Answers
 - <u>http://www.mathworks.com/matlabcentral/answers/</u>

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See <u>www.mathworks.com/trademarks</u> for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. © 2016 The MathWorks, Inc.

© 2016 The MathWorks, Inc.