
PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 1

Description
This lab teaches you to create a heart rate sensor device by measuring an analog signal input on the PSoC 4 BLE

device and reporting the measured heart rate value to a BLE enabled device such as an iPhone.

Pre-Reading

BLE Heart Rate Profile

The BLE Heart Rate Profile defines how the user’s heart rate information is communicated from one device to

another. This is used in health and fitness applications in modern wearable devices.

The Heart Rate Profile is a combination of two types of devices – a Sensor and a Collector. The Sensor detects

the heart rate and stores the information – acting as a GATT Server. It then sends this information to a Collector,

which acts as a GATT Client. The Sensor side is implemented in fitness bands and activity monitors. The Collector

side is implemented in mobile phones and tablets.

Heart Rate Service (HRS)

The Heart Rate Service defines three Characteristics, listed in Table 1.

Table 1: Heart Rate Service Details

Characteristic Details Properties Descriptors

Heart Rate
Measurement

Carries a heart rate measurement. Notify Client Characteristic
Configuration

Body Sensor
Location

Informs the GATT Client of the location of
the heart rate sensor.

Read None

Heart Rate Control
Point

Enables a Heart Rate Collector to control
the Sensor’s behavior.

Write None

A Characteristic is composed of three elements: Declaration, Value and Descriptor(s).

 A Declaration is the start of the Characteristic; it groups all the Attributes for this Characteristic.

 The Value is an Attribute that contains the actual value for this Characteristic.

 The Descriptors hold additional information or configuration for this Characteristic.

The Heart Rate Measurement Characteristic is the one which is used to communicate the heart rate value. This
characteristic has a number of fields. Each of these fields is one or two bytes in length, and together these fields
constitute a Heart Rate Measurement Characteristic. The fields are described in Table 2.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 2

Table 2: Heart Rate Measurement Characteristic

Field Name Field Requirement Size in
Bytes

Additional Information

Flags Mandatory 1 Bit [0] 0: Heart rate is 1 byte

1: Heart rate is 2 bytes

Bits [2:1] Sensor contact feature related
information

Bit [3] 0: Energy expended field is
not present

1: Energy expended field is
present

Bit [4] 0: RR-interval values are not
present

1: RR-interval values are
present

See Figure 2 on Page 4 for an
explanation on RR-interval. It
is the time interval between
successive heart beats.

Bits [7:5] Reserved

Heart Rate
Measurement value

Mandatory 1 or 2 The size depends on Bit[0] of the Flags field.

Energy Expended Optional 2 The amount of energy expended by the user,
in Joules. This field exists based on Bit[3] of
the Flags field.

RR-interval Optional 2 RR-interval measured in seconds. This field
exists based on Bit[4] of the Flags field.

The Body Sensor Location Characteristic can have different values to represent the various body parts the sensor
is attached to. The fields are described in Table 3.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 3

Table 3: Body Sensor Location Characteristic

Field Name Field Requirement Size in
Bytes

Additional Information

Flags Mandatory 1 Enumerations

Key Value

0 Other

1 Chest

2 Wrist

3 Finger

4 Hand

5 Ear Lobe

6 Foot

7 - 255 Reserved for future use

The Heart Rate Control Point Characteristic can be used to reset the Energy Expended field in the Heart Rate
Measurement Characteristic. We are not using this Characteristic in this lab.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 4

Objectives
1. Measure simulated heart rate using the Programmable Analog Blocks

2. Implement a Heart Rate Profile and send the data over BLE

3. Optimize the design for low power consumption using Sleep, Deep-Sleep and Hibernate modes

Requirements Details

Hardware
BLE Pioneer Kit (CY8CKIT-042-BLE)

4 jumper wires

Software

PSoC Creator 3.3 (or newer)

CySmart 1.0

CySmart iOS or CySmart Android Mobile App

Block Diagram

Figure 1: Lab #2 Block Diagram

Background Check
This lab requires a basic knowledge of PSoC Creator and PSoC 4 BLE. Ensure that you have completed Lab 1
before proceeding.

Theory
This lab shows how to create a heart rate sensor device by measuring an analog signal input on the PSoC 4 BLE
and reporting the measured heart rate value to a BLE enabled device such as an iPhone.

ARM

Cortex-M0
BLE

Pin

P3[7]

SAR1

ADC

PRoC BLE

(Heart Rate

Simulator)

Blue

LED

BLE

Connection

PSoC 4 BLE

BLE-USB Bridge

with PRoC BLE

CySmart

Software Tool

PC

Pin

P3[6]

Green

LED

Opamp

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 5

Heart Rate Signal

A representative heart rate electrical signal is shown in Figure 2. Different parts of the signal have different

labels. The R peaks represent the time when the heart beats. The heart rate is measured by identifying the time

interval between successive R peaks (also known as the RR-interval) and then extrapolating it to the number of

RR-intervals over a minute. This gives us the heart rate in beats per minute.

Figure 2: Heart Rate Signal

A TCPWM Component inside the PRoC BLE module is used to simulate the heart rate signal. This can be

connected to the PSoC 4 BLE device for heart rate measurement.

BLE Implementation

Our lab focuses on creating a HRS Sensor device. There are specific events generated by the BLE Component for

HRS, and we need to handle those events explicitly. Additionally, we need to generate a notification every

second for the heart rate value. The BLE Pioneer continues to act as the GATT Server. Security settings for this

lab are the minimum settings.

Analog Front End (AFE)

Heart rate detection is done by implementing an AFE on the PSoC 4 BLE chip. To generate the heart rate signal,

we will program the PSoC module provided in the kit with a prebuilt project. To keep the AFE simple, this signal

is detected by using an Operational Amplifier (opamp) as an input buffer and then passing the signal to the ADC.

The detected signal is compared to a threshold and whenever a beat is detected, its time of occurrence is noted.

The time difference between successive beats is extrapolated to 60 seconds to get a corresponding heart rate

value in beats per minute (bpm).

The AFE implementation is already present as part of the project template provided with this lab manual.

For end-system implementation, the PSoC 4 BLE has four Operational Amplifiers, two Low Power Comparators,

and two current DACs. These can be used to build a more sophisticated AFE.

Low Power Implementation

We also demonstrate the low-power modes of PSoC 4 BLE in this lab. For this purpose, we implement a

continuous Active – Deep-Sleep power mode cycle, with the watchdog timer acting as a periodic wakeup source.

The Active mode performs the ADC scan for the heart rate signal, and sends the heart rate measurement

notification every second. The BLE block can also wakeup the device from the Deep-Sleep mode when a new BLE

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 6

connection interval approaches. This happens automatically, and the device can be put back to Deep-Sleep once

the corresponding Receive/Transmit is complete. The device then waits for the watchdog interrupt to wake it up

for the next cycle. If the device is disconnected or its advertising times out, the system enters the Hibernate

mode and can be woken up using a user-input via the button SW2.

Procedure
To save time, start this lab from the template project that is provided. The template project has some details
already completed, and you need to just fill in the blanks as instructed.

Configure Schematic

Open the template project named BLE Lab 2 and follow these steps to get started:

1. Open the schematic by double clicking TopDesign.cysch in the Workspace Explorer. Note that there are

two sheets in the schematic indicated by tabs at the bottom of the schematic editor. See Figure 3.

Figure 3: The Schematic Editor Has Separate Sheets for BLE and Analog Front End

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 7

2. In the Bluetooth Low Energy sheet of the schematic, place the BLE Component. Double-click it to
configure the Component. Refer to the Component datasheet to learn more about the configuration
parameters.

3. General Tab - Set the Profile to Heart Rate and the Profile role to Heart Rate Sensor (GATT Server).

See Figure 4.

Figure 4: BLE Component Configuration – General Tab

4. Profiles Tab - This tab is automatically populated with the required Services and Characteristics. The

Device Information Service (DIS) is a part of the Heart Rate Profile and shows up on the left side, similar

to Figure 5. Assign the values to the Characteristics of the DIS as shown in Table 4. These values can be

read on the GATT Client BLE device.

Table 4: Device Information Service Characteristics

Characteristic Field Value

Manufacturer Name String Manufacturer Name Cypress Semiconductor

Model Number String Model Number BLE Pioneer Kit

Serial Number String Serial Number 1

Hardware Revision String Hardware Revision **

Firmware Revision String Firmware Revision 1.0

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 8

Figure 5: Device Information Service

5. GAP Settings Tab -
5.1. General

To learn more about these parameters, refer to the Bluetooth Component datasheet

a. Set the Device name as per your choice.
b. Set the device Appearance to a Generic Heart Rate Sensor

Figure 6: GAP Settings - General

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 9

5.2. Peripheral Role -> Advertisement Settings
To learn more about these parameters, refer to the Bluetooth Component Datasheet.
a. Discovery mode: Leave it as the default value, General
b. Advertisement type: Leave it as the default value, Connectable undirected advertising
c. Filter policy: Leave it as the default value, Scan request: Any | Connect request: Any
d. Advertising channel map: Leave it as the default value, All channels.
e. Fast advertising interval: Leave it as the default value, 20 for minimum (ms) and 30 for

maximum (ms) interval. The timeout (s) should be 30
f. Slow advertising interval: Uncheck to disable this setting

Figure 7: GAP Settings – Advertisement Settings

5.3. Peripheral Role -> Advertisement Packet
Enable Advertisement packet details per your choice, while ensuring that the length of the

advertisement packet does not exceed 31 bytes. This is the maximum size possible for an

advertisement packet. If you exceed this limit, the wizard indicates an error by showing a red

exclamation mark in front of the actual advertisement packet. See Figure 8.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 10

Figure 8: GAP Settings – Advertisement Packets

5.4. Peripheral Role -> Scan Response Packet

Enable Scan response packet details per your choice (Local Name is recommended), while

ensuring that the length of the scan response packet does not exceed 31 bytes. This condition is

similar to the advertisement packet size condition. See Figure 9.

Figure 9: GAP Settings – Scan Response Packet

5.5. Peripheral preferred connection parameters

Leave them as the default values, 7.5 for Minimum (ms), 50 for Maximum (ms), 0 for Slave
latency and 10000 for Connection supervision timeout (ms)

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 11

Figure 10: GAP Settings - Peripheral preferred connection parameters

5.6. Security
To learn more about these parameters, refer to the Bluetooth Component Datasheet.

a. Security mode: Select Mode 1 security
b. Security level: Select No Security (No Authentication, No Encryption)
c. I/O Capabilities: Set this to No Input No Output
d. Bonding requirement: Set this to No Bonding
e. Encryption key size (bytes): Leave this parameter to the default value of 16

Figure 11: GAP Settings - Security

6. Click OK to close the BLE configuration window.

7. Select the Analog Front End sheet of the schematic.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 12

8. Search for the Opamp Component in the Component Catalog, and drag and drop it onto the schematic.

Double-click it to configure. See Figure 12.

9. Name the Component as Opamp and set the Mode to Follower.

10. Click OK to close the configuration window.

Figure 12: Opamp Component Configuration Tool

11. Search for the Sequencing SAR ADC Component in the Component Catalog, and drag and drop it on the

Analog Front End sheet of the schematic. Configure the ADC by double-clicking it.

12. On the General tab of the ADC Component Configuration Tool, set the settings as shown in Figure 13.

Note that an error is shown for the Channel sample rate until the Channels tab is configured in the next

step.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 13

Figure 13: ADC general Settings

13. Configure the settings in the Channels tab as shown in Figure 14.

Figure 14: ADC Channels Settings

14. Click OK to close the ADC configuration window.

15. Add the Logic Low ‘0’ Component to the schematic editor and connect its output to the soc input of the

ADC Component.

16. Connect the Heart_Rate_input pin terminal to the + input of the Opamp.

17. Connect the output of the Opamp to the + input of the ADC. Your schematic sheets should now look like

Figure 15 and Figure 16.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 14

Figure 15: Analog Front End Sheet of the Schematic

Figure 16: Bluetooth Low Energy Sheet of the Schematic

18. Click the menu item Build -> Build BLE Lab 2 to generate the Component source code files.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 15

Review Firmware

The firmware for this lab on a high level can be categorized into the following sections:

1. System Initialization – When the device is reset or wakes up from the Hibernate mode, the firmware

performs an initialization which includes starting the ADC and the Opamp, and enabling global

interrupts. The firmware then initializes the BLE Component, which registers the general event handler,

and then registers the event handler to receive events for the Heart Rate Service.

2. System Normal Operation – In the system normal operation state, the firmware periodically calls

CyBle_ProcessEvents() to process the BLE Stack-related operations and checks if the connection is

established. If the connection is established, firmware measures the heart rate at regular time intervals.

If notifications are enabled, the firmware sends the heart rate information to the GATT Client as

notifications.

3. System Low-power Operation – The system operates in one of the three possible low power modes:

a. Sleep: This mode is entered when the CPU is free but the BLESS (BLE Subsystem) is active and

busy in data transmission or reception. In this scenario, the CPU enters the Sleep mode while

the remaining chip is kept active for normal BLE operation.

b. Deep-Sleep: The firmware continuously tries to put the BLESS into the Deep-Sleep mode. Once,

the BLESS is successfully put into the Deep-Sleep mode, the device also transitions to the Deep-

Sleep mode.

Note: Transitioning the device into the Deep-Sleep mode should happen immediately after the

BLESS is put into Deep-Sleep mode. If this cannot be guaranteed, the firmware should disable

interrupts (to avoid servicing ISRs, i.e. Interrupt Service Routines) and re-check if the BLESS is in

the Deep-Sleep mode or the ECO On mode (this is the BLE mode when external oscillator is just

starting up for a new connection interval. If the BLESS is in either of the two modes, then the

device can safely enter the Deep-Sleep mode, else it has to wait till the Rx/Tx event is complete.

c. Hibernate: When the device gets disconnected or the advertising times out, it enters the

Hibernate mode. After waking up from this mode, the firmware starts to execute from the

beginning, although the SRAM contents are retained.

4. Event Handler – In the BLE Component, results of any operations performed on the BLE Stack are

relayed to the firmware via a list of events. These events provide BLE interface status and data

information. Events can be divided into the below two categories. Refer to the BLE Component

datasheet for additional information.

a. Common Events: These are the general events generated because of operations performed on

the GAP layer, the GATT layer and the L2CAP layer of the Stack. For example, the

CYBLE_EVT_STACK_ON event is received when the BLE Stack is initialized and turned ON.

b. Service Specific Events: These are the events generated because of operation performed on the

standard Services defined by the Bluetooth SIG. For example, the

CYBLE_EVT_HRSS_NOTIFICATION_ENABLED event is received by the GATT Server when the

GATT Client writes the Client Configuration Characteristic Descriptor (CCCD) to enable the

notification for the Heart Rate Measurement Characteristic.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 16

Figure 17 shows the firmware flow of Lab 2 and Table 5 shows how this firmware is organized into different files
in the project.

Figure 17: Firmware Flow

Stack ON? Start Advertising

Device

Disconnected?

- Configure wakeup pin

- Go to Hibernate

Y

Y

Return from General

event handler

G
e

n
e

ra
l E

v
e

n
t H

a
n

d
le

r

Notification

Enabled?
Start Notification

Notification

Disabled?
Stop Notification

N

Y

Y

Y

Return from Heart Rate

Service event handler

H
e

a
rt R

a
te

 S
e

rv
ic

e
 E

v
e

n
t H

a
n

d
le

r

BLE Event Handler

Advertising

Timeout?

- Configure wakeup pin

- Go to Hibernate
Y

N

N

N

Reset or Wakeup from

Hibernate

- Start ADC and OpAmp

- Initialize Watchdog

Timer

- Initialize BLE

- Register General

Event Handler

Register Heart Rate

Service Event Handler

WDT Event

S
y

s
te

m
 I
n

it
ia

li
z
a

ti
o

n
S

y
s

te
m

 N
o

rm
a

l
O

p
e

ra
ti

o
n

S
y

s
te

m
 L

o
w

 P
o

w
e

r
O

p
e

ra
ti

o
n

BLESS in

Deep Sleep

Put BLESS in Deep

Sleep mode

Get BLESS state

Process Events

BLE State =

Initializing?

BLE State

= Deep_Sleep or

ECO_ON

Put System in Deep

Sleep mode

YRx/Tx

Complete?

Put System in Sleep

mode

N

N Y

Y N

N

Y

Measure Heart Rate

Notifications

Enabled?

Send Heart Rate

Notification

Y

Y

N

N

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 17

Table 5: Main Files Present in the Project

File name Details

main.c This is the main firmware file. It initializes the system and runs the main loop,
which includes low power implementation.

This file has two functions:
main() – The main function

InitializeSystem() – Initializes all the blocks of the system

BleProcessing.c This file handles the BLE specific functionality of the project. It handles the BLE
events and HRS notifications. The file has these functions:

GeneralEventHandler() – Handles the general events for a BLE advertisement,
connection, and disconnection. This function is a callback from the BLE Stack for
general events.

HrsEventHandler() – Handles the HRS specific events for notification enable and
notification disable. This function is a callback from the BLE Stack for HRS events.

SendHeartRateOverBLE() – Creates a Heart Rate Measurement Characteristic
notification packet and sends it. This function is called from main once per
second.

HeartRateProcessing.c This file handles the heart rate measurement part of the project. It has one
function:

ProcessHeartRateSignal() – Takes the ADC output and compares it to a threshold
to identify R-peaks; calculates the system timestamp difference between two R-
peaks to get the RR-interval; extrapolates to get the heart rate value in beats per
minute. This function is called from main.

WatchdogTimer.c This file handles the watchdog timer functionality and keeps track of the system
time. It has these functions:
WatchdogTimer_Start() – Starts the watchdog timer (WDT0) with a 10 ms period
and interrupt on match.

WatchdogTimer_Isr() – The ISR for the WDT; it increments the system timestamp
variable by 10 ms. This function is a Callback from the watchdog timer.

WatchdogTimer_GetTimestamp() – Returns the current timestamp to the caller
for any time-keeping purposes of the application.

main.h This file defines a compile-time option RGB_LED_IN_PROJECT which enables the
RGB LED usage. Keeping its value to ‘1’ enables RGB LED drive and ‘0’ turns off
the LEDs. If this is enabled, the green LED will be on when advertising and the
blue LED will be on when connected.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 18

Build and Program

1. The firmware for this lab has been implemented as a part of the template project.
2. Build your project to generate the hex file and program the hex file to your kit.

Programming PRoC BLE

For simulating the heart rate signal, we will use the PRoC BLE module. Custom firmware for the PRoC BLE is

already available as part of this lab. This has to be programmed into the PRoC BLE device:

1. Remove the kit’s USB connector from the PC, if already connected.

2. Replace the PSoC 4 BLE module (red color) with the PRoC BLE module (black color) as shown in

Figure 18: CY8CKIT-042-BLE Baseboard with PRoC BLE module

3. Connect the kit’s USB connector to the PC using the provided USB cable.

4. Open PSoC Programmer 3.22.2 or higher. It is located in the All Programs -> Cypress -> PSoC

Programmer 3.22.2.

5. Select File Load from the File menu in the PSoC Programmer window to select the hex file for PRoC BLE

device. Hex file for PRoC BLE device is available in BLE Workshop -> Labs -> Supporting Files folder. See

Figure 19.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 19

Figure 19: Selecting the hex file

6. Select Program from the File menu in the PSoC Programmer window to program the PRoC BLE device, as

shown in Figure 20.

Figure 20: Programming the PRoC BLE Device

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 20

7. After the programming is complete, the log window displays Programming Succeeded.

8. Repeat steps 1 to 3, but replace the PRoC BLE module (black color) with the PSoC 4 BLE module (red

color).

Testing

It is time to test your application. Follow these steps:

1. PRoC BLE generates the heart rate signal on P0.1, with an expected value of around 120. Connect this

pin (Pin 20 on J2) to P2.0 of PSoC 4 BLE (Pin 2 on J2). See Figure 21.

2. The generated heart rate signal can be changed to reflect different heart rate values within a range of 55

– 115 bpm. To check the different values, we will use the SW2 switch on the kit. For this purpose,

connect the PRoC BLE pin P0.0 (Pin 19 on J2) to pin P3.0 of PSoC 4 BLE (Pin 1 on J2). See Figure 21.

3. To power the PRoC BLE module, connect the PRoC BLE Vdd (Pin 2 on J2) and Gnd (Pin 4 on J2) to

BLE.VDD (Pin 7 on J1) and Gnd (Pin 2 on J1), respectively. See Figure 21.

Figure 21: Connecting the PSoC 5 Signals to PSoC 4 BLE on the Kit

4. On the BLE Pioneer Kit, the RGB LED is used to indicate the current status of the device. Two of the three

LEDs are used to signal different states, as explained in Table 6.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 21

Table 6: Device State Indicated by RGB LED on the Kit

RGB LED Color Description

Green Device is currently advertising and is ready to connect

Blue Device is connected

None (LED OFF) Device is disconnected

5. This lab can be tested with both the CySmart iOS/Android Mobile App as well as the CySmart BLE Test

and Debug Tool (Windows). You can choose either. To install the CySmart Mobile App on your

iOS/Android device, search for CySmart on their respective app stores. Note, if the app does not show

up on your phone’s app store, it likely means your phone is not BLE-capable.

Testing with CySmart BLE Test and Debug Tool

1. Open CySmart 1.0 and connect the BLE-USB Bridge to it.

2. Make sure your device is advertising, and then click Start Scan to list all the available devices. If you do

not see your device appear, press SW2 on the BLE Pioneer Kit to exit from the low-power mode and

restart advertising.

3. Connect to your device: Select the appropriate device name and click Connect.

4. Upon connection, a new tab opens in the tool. Click Discover All Attributes to list all the Services,

Characteristics and Descriptors of your device.

5. Click Enable All Notifications on the top to enable Heart Rate Measurement Characteristic notifications.

See Figure 22.

Figure 22: Enable Notifications in CySmart

6. Observe that the value of the Heart Rate Measurement Characteristic is updated every second (this

value is in hexadecimal), while the tool’s log at the bottom shows new notification packets every

second. See Figure 23.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 22

Figure 23: Heart Rate Data in CySmart

7. Press the SW2 switch on the kit and observe that the heart rate number changes.

8. Disconnect the device and notice that the RGB LED turns off. At this point, the device has entered the

Hibernate mode.

9. Press the SW2 switch now to see that the Green LED turns on and the device starts advertising again.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 23

Testing with CySmart Mobile App

1. Open the CySmart mobile app on a BLE-enabled mobile device. If you do not have Bluetooth switched

on already, the app asks you to do it.

2. Once Bluetooth is on, the app home screen lists the BLE devices nearby. Check that your device is on the

list. Note, swipe down on this screen to refresh the list of available BLE devices. See Figure 24.

Figure 24: CySmart iOS App Home Screen

3. Tap your device name (BLE Lab 2) to go to the Profile screen. This screen shows the Services supported

by your device. Tap on the Heart Rate Service now. See Figure 25.

Figure 25: CySmart iOS Profile Page

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 24

4. On the Heart Rate Service page you can see the current heart rate being transmitted by the sensor. See

Figure 26.

Figure 26: CySmart iOS Heart Rate Service Page

5. Press the SW2 switch on the kit and observe that the heart rate number changes on the app.

6. Disconnect from the device and you will notice that the RGB LED turns off. At this point, the device has

entered Hibernate mode. Hibernate is an ultra-low power mode from which the device can be woken up

by a GPIO interrupt.

7. To wake the device up from Hibernate mode, press the SW2 switch. You’ll notice that the LED turns

Green again and the device starts advertising.

Note: If you want to measure power consumption in any of the various modes, you can attach a current probe
at J15. Before measuring power, the value of RGB_LED_IN_PROJECT in main.h should be changed to (0) and the
device should be reprogrammed. Otherwise, the LED power is included in the measured power which dominates
the total system power.

Congratulations, you have completed Lab 2!

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 25

Additional Exercises

1. Configure the Opamp, used as a follower, to work in Deep-Sleep mode with lower power settings.
Additional information: In the PSoC 4 BLE device, the Opamp block can be configured to operate in the
deep-sleep mode with lower power and performance. When the Deep sleep operation is enabled, the
Opamp consumes a typical current of 15uA with a Gain bandwidth product of 50kHz.

2. Update the Connection Interval to 1 second from the PSoC 4 BLE device. This will save system power
since the BLE radio will only turn on every second.
Additional information: When a connection gets established, the GAP Central configures the connection
interval. Below are the default connection intervals for different devices:

CySmart BLE Test and Debug Tool: 10ms
iOS devices: 30ms
Android devices: 50ms

A GAP Peripheral must send a Connection Parameter Update Request to the GAP Central for updating
the connection interval to the desired interval setting. When Connection Parameter Update Request is
sent to the CySmart BLE Test and Debug Tool, it displays a message, shown in Figure 27, asking for user’s
permission to accept or reject the request

Figure 27: Connection Parameter Update Request

Hint: Use the API CyBle_L2capLeConnectionParamUpdateRequest(uint8 bdHandle,
CYBLE_GAP_CONN_UPDATE_PARAM_T * connParam) to update the connection parameters. This API is
available in the completed firmware as a conditional compile code.

3. Update the sensor location by updating the Body Sensor Location Characteristic with values as per Table

3.
Hints:

 Body sensor location value should be static during the connection, thus you should update it as
a part of the initialization code.

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 26

 For updating the Body Sensor Location Characteristic, use the API
CyBle_HrssSetCharacteristicValue(CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *
attrValue).

PSoC 4 BLE Lab #2: IoT Sensor-Based
System Design

001-98279 Rev *A Introduction to BLE System Design - Lab #2 27

Document Revision History (001-96274)
Revision By Description

** PMAD Initial Release

*A GUL Edits for BLE terminology

Document Revision History (001-98279)
Revision By Description

** PMAD

Labs moved to new spec number

Updated to PSoC Creator 3.2

Replaced bootloading of PSoC 5LP with PRoC Programming

Updated additional exercises

*A PMAD Updated to PSoC Creator 3.3

