
PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 1

Description
This lab teaches you how to create a Custom Profile by implementing an RGB LED controller through BLE. It also
demonstrates how to combine CapSense and BLE in a system, by designing a slider application.

Pre-Reading
Custom Profile
The BLE standard provides you with an option to create your own Profile for a customized application. A Custom
Profile can contain standard BLE Services as well as custom Services you define.

A Custom Service is user-defined, i.e., you can define your own Characteristics and their Descriptors. Each Service,
Characteristic, and Descriptor will have its own UUID, which you define.

Recall, the UUID stands for Universally Unique Identifier, it’s used to uniquely identify a Service, Characteristic, or
Descriptor. All UUIDs are 128-bit in length but in order to reduce the data transfer over BLE, the UUIDs can be
converted to a 16-bit or 32-bit value.

In an end-design it’s recommended to use a 128-bit value for the UUID of custom services, characteristics, and
descriptors. For simplicity, in this lab we’ll use 16-bit values.

Custom Service for RGB LED

Cypress has defined a Custom Service for transferring RGB LED data over BLE. The Service has one Characteristic.
The Characteristic details are given in Table 1. This Characteristic contains 4 bytes as described in Table 2. One
byte each for the Red, Green and Blue LEDs and another byte for the overall LED intensity.

Custom Service UUID (16-bit): 0xCBBB

Custom Characteristic UUID (16-bit): 0xCBB1

Table 1: Custom Service for RGB LED

Characteristic Details Properties Descriptors

Custom Carries the RGB hue and brightness level
information.

Read, Write Characteristic User
Description

The Read property signifies that the Characteristic can be read by the GATT Client. The Write property signifies
that the Characteristic value can be changed by the GATT Client.

The Characteristic User Description Descriptor is a string to identify what the Custom Characteristic is. The GATT
Client treats this as the name of the Characteristic.

Table 2: Custom Characteristic Fields for RGB LED

Field Name Field Requirement Size in
Bytes

Additional Information

Red LED Mandatory 1 Range: 0 to 255

Green LED Mandatory 1 Range: 0 to 255

Blue LED Mandatory 1 Range: 0 to 255

Intensity Mandatory 1 Range: 0 to 255

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 2

Custom Service for CapSense Slider

Cypress has defined another Custom Service for CapSense functionality. The Service has one Characteristic for
implementing sliders. See Table 3 for details.

Custom Service UUID (16-bit): 0xCAB5

Custom Characteristic UUID (16-bit): 0xCAA2

Table 3: Custom Service for CapSense Slider

Characteristic Details Properties Descriptors

Custom Carries the CapSense slider information.
This is 1 byte data and the valid range is 0
to 255.

Notify Client Characteristic
Configuration

Characteristic User
Description

The Notify property means that the GATT Server (the BLE Pioneer Kit in this case) can send unsolicited notifications
to the GATT Client, once notifications enabled by the GATT Client.

The Client Characteristic Configuration Descriptor (or CCCD) is used by the GATT Server to identify whether
notifications are enabled or not. If the CCCD has a value of ‘1’, the notifications are enabled. A value of ‘0’ indicates
disabled notifications.

Note: CySmart iOS/Android mobile apps can recognize the above defined custom UUIDs and display data in
graphical format. A 3rd party app which is not programmed for these custom UUIDs will only be able to show
data in raw format, similar to the GATT DB view of the CySmart iOS/Android mobile apps.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 3

Objectives
1. Adjust RGB LED color and intensity using the PRiSM Component

2. Implement a custom BLE Profile with a custom Service to send RGB LED color and intensity over BLE

3. Implement a Custom Service to send CapSense slider data over BLE

4. Use the CySmart tool or mobile app to validate the operation

Requirements Details

Hardware BLE Pioneer Kit (CY8CKIT-042-BLE)

Software

PSoC Creator 3.3 (or newer)

CySmart 1.0

CySmart iOS or CySmart Android app

Block Diagram

Figure 1: Lab 3 Block Diagram

Background Check
This lab requires a basic working knowledge of PSoC Creator and the BLE Component. Ensure that you have
covered Lab 1 and Lab 2 before proceeding.

Theory
This lab implements two Custom Services – one to control the RGB LED on the kit over BLE, and the other to send
CapSense slider information over BLE.

To control the LED, the PrISM (Precision Illumination Signal Modulation) Component is used, implemented using
Universal Digital Blocks (UDBs). The PrISM Component uses a Linear Feedback Shift Register (LFSR) to generate
the user-adjustable pseudo random pulse densities, ranging from 0 to 100%. One PrISM block can generate two
outputs, thus we need two PrISM blocks to drive the three LEDs on the kit. Together, these PrISM blocks control

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 4

the hue and brightness of the RGB LEDs. This Component provides better EMI performance than using a standard
PWM to control intensity. See the Component datasheet for additional details.

Procedure
We start this project with a template lab. Some of the details are already present, and you need to fill in the blanks
as instructed. To get started, open the project BLE Lab 3 and follow these instructions.

Configure Schematic

1. Open the schematic and place the BLE Component. Configure the Component as shown in the following

steps. For more information, please refer to the BLE Component datasheet.

2. General Tab - Set the Profile to Custom and the Profile role to Server (GATT Server). Set the GAP role to

Peripheral. See Figure 2.

Figure 2: BLE Component - General Tab

3. Profiles Tab - This tab has a custom service already. Configure that for CapSense Slider, and add another
Custom Service for RGB LED. Follow these steps:

3.1. Custom Service for CapSense Slider

a. Configure the Custom Service for CapSense Slider. Specifically:

b. Custom Service - Rename this service to CapSense Service by right-clicking on Custom

Service and choosing Rename.

c. Set the UUID length as 16-bit and value as 0xCAB5 (note: do NOT enter “0x” in the box,

just the four hex values). This is the UUID defined by Cypress for this Service.

See Figure 3.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 5

Figure 3: Configuring Custom Service UUID for CapSense Slider

d. Custom Characteristic – Rename this to CapSense Slider Characteristic. Set the UUID

(16-bit) to 0xCAA2. Enable Notify in the Properties for the Characteristic. When you

enable the Notify property, the Client Characteristic Configuration Descriptor is

automatically added. See Figure 4.

Figure 4: Configuring Custom Characteristic for CapSense Slider

e. Delete the Custom Descriptor by right-clicking on it and selecting Delete.

f. Click on the CapSense Slider Characteristic, and using the Add Descriptor drop down on

the top, add the Characteristic User Description Descriptor. See Figure 5.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 6

Figure 5: Add Descriptor for the CapSense Service

g. Set the value of Characteristic User Description to CapSense Slider. See Figure 6.

Figure 6: Characteristic User Description for CapSense Slider Characteristic

3.2. Custom Service for RGB LED

a. Add a new Custom Service to the Profiles page by right-clicking on Server and then

selecting Add Service -> Custom Service. See Figure 7.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 7

Figure 7: Add Custom Service for RGB LED

b. Rename this Custom Service to RGB LED Service. Set its UUID (16-bit) to 0xCBBB.

c. Rename the Custom Characteristic in this service to RGB LED Characteristic. Set its UUID

(16-bit) to 0xCBB1. See Figure 8.

d. For the RGB LED Characteristic, change the Type of New Field under the Fields column to

uint8 array and the Length to 4, see Figure 8. This is because the Characteristic contains

four bytes – for Red LED, Green LED, Blue LED, and overall intensity.

See Table 2 on Page 1 for details on the characteristic.

e. Enable Read and Write in the Characteristic properties. See Figure 8.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 8

Figure 8: Configuring Characteristic for RGB LED Service

f. Delete the Custom Descriptor.
g. Add the Characteristic User Description Descriptor. Give it a value of RGB LED Control.

h. Your Profiles tab should now look like Figure 9.

Figure 9: Profiles Tab for Lab 3

4. GAP Settings Tab. Refer to the BLE Component datasheet for more information on the configuration

parameters.

4.1. General - Set the Device Address, Device name, and Appearance as shown in Figure 10.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 9

Figure 10: GAP Settings - General

4.2. Advertising Settings - Leave these default settings.

4.3. Advertisement Packet – Enable the Local Name and configure other settings as per your choice.

See Figure 11.

Figure 11: GAP Settings – Advertisement Packets

4.4. Scan Response Packet – Leave these default settings.

4.5. Peripheral preferred connection parameters - Leave these default settings.

4.6. Security – Configure as below:
a. Security mode: Select Mode 1 security
b. Security level: Select No Security (No Authentication, No Encryption)
c. I/O Capabilities: Set this to No Input No Output

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 10

d. Bonding requirement: Set this to No Bonding
e. Encryption key size (bytes): Leave this parameter to the default value of 16

5. Click OK to finish your BLE Component configuration.

6. Add the CapSense CSD Component to the schematic. This Component is used to sense your finger position
on the slider on the BLE Pioneer Kit.

7. Configure the CapSense CSD Component’s name to be CapSense. On the General tab, leave the default

settings. The Component automatically tunes its parameters for the best performance, using SmartSense

Auto-Tuning – an algorithm that sets, monitors and continuously maintains optimal capacitive sensor

performance.

8. On the Widgets Config tab, add a linear slider by clicking Linear sliders and then the Add linear slider

button, as shown in Figure 12.

9. Leave the slider’s settings at default. Note that each element’s sensitivity can be changed on the Scan

Order tab. Values can be from 1 – 10 with lower values providing higher sensitivity. See the Component’s

datasheet for additional information on this and other CapSense settings.

10. Click OK to complete the configuration.

Figure 12: CapSense Component Configuration - Adding a Linear Slider

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 11

11. The other Components have already been placed on the schematic. Double-click one of the PrISM
Components and examine the settings. Click the Datasheet button and review the datasheet for some
additional information on this Component and how it works.

12. Your schematic should now look as Figure 13 shows.

Figure 13: Schematic for Lab 3

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 12

Configure DWR

Open the DWR file. On the Pins tab, assign the segments of the linear slider to pins P2[1], P2[2], P2[3], P2[4], and

P2[5], in increasing order. The CMOD capacitor is on P4[0]. The three LEDs are already set to the correct device

pins.

Figure 14: Design Wide Resources – Pins Assignment

Build your project to generate the Component source files. This helps you while writing firmware because PSoC

Creator can auto-complete the API names, variables, and macros for you. The build will produce some errors

because the firmware is not yet completed. Don’t worry about these errors yet.

Firmware

The firmware consists of these high-level blocks:

1. CapSense slider: The CapSense slider on the kit is scanned periodically. If the finger position is different

from the previous scan, a notification packet is sent over BLE. The scan happens only when the

notifications for this CapSense Slider Characteristic are enabled by the GATT Client. The functions used

for the CapSense slider are in main.c.

2. RGB LED: The PrISM blocks used to drive the RGB LED are configured based on the Attribute values written

by the GATT Client. The value can be in a range of 0 and 255 for each LED individually. This value is

converted into a percentage of intensity for that LED and the corresponding PrISM block is configured.

The overall LED brightness is a separate input (one of the four bytes in that characteristic) which controls

the final intensity of all LEDs. The functions used for controlling the LEDs in BLEApplications.c

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 13

3. BLE: The events generated by the BLE Stack are handled to keep track of advertisement, connection, and

disconnection states. The Attribute Write request event is handled by first identifying the Attribute which

was written to by the GATT Client. These functions are contained in BLEApplications.c

If the Attribute is the CapSense Slider Characteristic’s Client Characteristic Configuration Descriptor

(CCCD), then the slider notifications are correspondingly enabled (CCCD = 1) or disabled (CCCD = 0). On

the other hand, if the Attribute is the RGB LED Characteristic, then the LED is controlled accordingly.

4. Application Layer: A top-level application layer is written for the firmware. The top-level application is

contained in main.c.

The firmware flow is shown in Figure 15. Table 4 lists the files present in the firmware. This table describes the

different functions defined in these files and their usage.

Note that for standard applications (e.g. Lab 1 and Lab 2) we had two BLE callback functions: one for general

events, and one specific to the standard service. In the case of a custom service, we just have a single callback

function which handles both general events and event related to our custom service(s). This single callback

function is registered when the BLE Component is started.

Figure 15: Firmware Flow

Stack ON? Start Advertising

Device

Disconnected?
Start Advertising

N

Y

Y S
ta

c
k

 E
v

e
n

t H
a

n
d

le
r

Write Request?

RGB LED update? Update RGB LED

Notifications

Enable/Disable

Request?

- Update CCCD

- Enable/Disable

Notifications

Y

N

N

N

Y

Y

Return from stack event

handler

N

Start

- Initialize BLE

- Register Stack Event

Handler

Process Events

- Initialize PrISM

- Initialize CapSense

M
a

in
()

 F
u

n
c

ti
o

n

Device Connected?

Notifications

Enabled?

Y

- Scan CapSense sensor

- Calculate Centroid

- Send notificiation

Y

N

N

w
h

ile
(1

)

Table 4: Main Files Present in the Lab 3 Project

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 14

File name Details

main.c This is the top level application file. It initializes the system and runs the main loop.

It also handles the CapSense slider functionality.

This file has three functions:

main() – The main function for the application

InitializeSystem() – Initializes all the blocks of the system

HandleCapSenseSlider() – Scans the CapSense slider and finds the finger position

on the slider. When the finger position changes relative to the previous scan, it

sends the new position as a notification over BLE. The notifications are sent by

calling the SendCapSenseNotification() function.

BLEApplications.c This file handles the BLE specific functionality of the project. It handles the BLE

events and notifications as well as LED control. The file has these functions:

CustomEventHandler(): Handles the events for BLE advertisement, connection,

and disconnection. Also services the write requests to the Custom Characteristics

and Descriptors. This function is a callback from the BLE Stack for all events.

SendCapSenseNotification(): Creates a CapSense Slider Characteristic notification

packet and sends it. This function is called by HandleCapSenseSlider() function in

main.c.

UpdateRGBled(): Configures the PrISM blocks to drive the RGB LED as per the

latest data. Also updates the RGB LED Characteristic in the database with the latest

data for a future read by the GATT Client.

Build and Program

1. The firmware for this lab has been implemented as a part of the template project.

2. Build your project to generate the hex file, and Program it to your kit.

Testing with CySmart Central Emulation Tool

1. Open CySmart 1.0 and Connect it to the BLE-USB Bridge.

2. Start Scan and Connect to your GATT Server device.

3. Discover all Attributes and then scroll down the Attribute list to the RGB LED Characteristic (it has the

UUID 0xCBB1). See Figure 16.

Figure 16. CySmart - RGB LED Characteristic

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 15

4. Write a 4 byte value to this Characteristic on the right and notice the corresponding color and intensity of

the RGB LED on the kit. Byte 0 corresponds to the Red color, Byte 1 corresponds to the Green color, Byte

2 corresponds to the Blue color, and Byte 3 corresponds to the intensity. For example, writing 00:00:FF:FF

to this Characteristic turns on the Blue LED with full intensity. See Figure 17.

Figure 17: CySmart - Write Attribute

5. Now locate the CapSense Slider Characteristic (UUID = 0xCAA2) and enable notifications for it, either by

clicking Enable All Notifications or by writing 1 to its CCCD descriptor (UUID=0x2902).

6. Move your finger over the slider on the kit and observe that the value of the Characteristic changes in the

CySmart tool, while the tool’s log shows notification packets being received. See Figure 18.

Figure 18: CySmart - Slider Notifications

7. Disable notifications either by clicking Disable All Notifications or by writing 0 to its CCCD descriptor.

Move your finger on the slider again. Notice that the slider position is no longer reported because

notifications have been disabled.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 16

Testing with CySmart Mobile App

1. Open the CySmart Mobile App on your phone. If you do not have Bluetooth switched on already, the app

will ask you to do it.

2. Connect to your GATT Server device on the app. Once connected, the app shows you all the Services

exposed by the GATT Server. It automatically detects the Custom Services for RGB LED and CapSense

Slider and lists them respectively.

3. Select the RGB LED Service. You will see that a color gamut is available. Tap anywhere on the gamut to

see the corresponding color on the RGB LED on the kit. See Figure 19.

Figure 19: CySmart iOS Mobile App – RGB LED Control

4. Move the slider position on the app page to change the brightness level of the LED.

5. Now go back one page in the app and select the CapSense Slider Service.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 17

6. Once on the CapSense Slider page, move your finger on the slider on the kit. You will see a corresponding

slider update on the app page. See Figure 20.

Figure 20: CySmart iOS Mobile App – CapSense Slider

Congratulations! You have completed lab 3!

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 18

Additional Exercises

1. Replace the CapSense Slider with a CapSense Proximity Sensor.
Hints:

 Use CAA1 as the UUID for CapSense Proximity Service.

 Remove the slider widget from the CapSense Component and add a Proximity widget

 Assign the proximity sensor to the pin assigned for proximity header on the CY8CKIT-042-BLE

 Enable the Proximity Sensor using the API function
CapSense_EnableWidget(CapSense_PROXIMITYSENSOR0__PROX) before starting the CapSense
Component.

 Use the API function CapSense_GetDiffCountData(CapSense_PROXIMITYSENSOR0__PROX)
instead of CapSense_GetCentroidPos(CapSense_LINEARSLIDER0__LS) to extract the proximity
value

 Modify the code to always send the CapSense Proximity sensor Notification data

2. Implement low-power operation for lab 3.

Hints:

 Follow the firmware implementation from PSoC 4 BLE Lab 2.

 Add a switch to wake-up the device from Hibernate mode.

 The PrISM Component is not active during the Deep-Sleep mode, so change the code for putting
the device in the Deep-Sleep mode to use Sleep mode instead.

Note: Refer to PSoC_4_CapSense_Slider_LED example project (installed with CY8CKIT-042-BLE) for
Deep-Sleep operation with the PrISM Component.

PSoC 4 BLE Lab #3: CapSense Design
with BLE Connectivity

001-98279 Rev *A Introduction to BLE System Design - Lab #3 19

Document Revision History (001-96274)
Revision By Description

** PMAD Initial Release

*A GUL Edits for BLE terminology

Document Revision History (001-98279)
Revision By Description

** PMAD

Labs moved to new spec number

Update to PSoC Creator 3.2

Added details for additional exercises

*A PMAD Updated to PSoC Creator 3.3

